
T E C H N O L O G Y  I N  A C T I O N ™

Science and 
Engineering Projects 
Using the Arduino 
and Raspberry Pi

Explore STEM Concepts with 
Microcomputers
—
Paul Bradt
David Bradt

www.allitebooks.com

http://www.allitebooks.org


Science and 
Engineering Projects 

Using the Arduino 
and Raspberry Pi
Explore STEM Concepts 

with Microcomputers

Paul Bradt
David Bradt

www.allitebooks.com

http://www.allitebooks.org


Science and Engineering Projects Using the Arduino and Raspberry Pi: 

Explore STEM Concepts with Microcomputers

ISBN-13 (pbk): 978-1-4842-5810-1		  ISBN-13 (electronic): 978-1-4842-5811-8
https://doi.org/10.1007/978-1-4842-5811-8

Copyright © 2020 by Paul Bradt and David Bradt 

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or 
part of the material is concerned, specifically the rights of translation, reprinting, reuse of 
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, 
and transmission or information storage and retrieval, electronic adaptation, computer software, 
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark 
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, 
and images only in an editorial fashion and to the benefit of the trademark owner, with no 
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if 
they are not identified as such, is not to be taken as an expression of opinion as to whether or not 
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of 
publication, neither the authors nor the editors nor the publisher can accept any legal 
responsibility for any errors or omissions that may be made. The publisher makes no warranty, 
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail 
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a 
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc 
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook 
versions and licenses are also available for most titles. For more information, reference our Print 
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is 
available to readers on GitHub via the book’s product page, located at www.apress.com/ 
978-1-4842-5810-1. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Paul Bradt
Houston, TX, USA

David Bradt
Houston, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-5811-8
http://www.allitebooks.org


The authors dedicate this book to  
all of the Science, Technology, Engineering,  

Math (STEM) teachers who guide and  
shape the paths of many young minds (including ours)  

to question, learn, and utilize new technology to  
solve problems. Without these unsung heroes,  

the world would not have powerful cell phones,  
highly reliable cars, the Internet, and many other  

amazing things we routinely take for granted.

www.allitebooks.com

http://www.allitebooks.org


v

About the Authors���������������������������������������������������������������������������������xi

About the Technical Reviewer������������������������������������������������������������xiii

Acknowledgments�������������������������������������������������������������������������������xv

Introduction���������������������������������������������������������������������������������������xvii

Table of Contents

Chapter 1: Key Technology Tools�����������������������������������������������������������1

Arduino Basics�������������������������������������������������������������������������������������������������������1

Arduino Setup���������������������������������������������������������������������������������������������������2

Ports and Interfaces�����������������������������������������������������������������������������������������3

Lessons Learned About the Arduino�����������������������������������������������������������������6

Raspberry Pi Basics�����������������������������������������������������������������������������������������������8

Raspberry Pi Setup�����������������������������������������������������������������������������������������10

Lessons Learned About the Raspberry Pi�������������������������������������������������������15

Basic Electronics Definitions�������������������������������������������������������������������������������18

Summary�������������������������������������������������������������������������������������������������������������18

Chapter 2: Data Logging Basics�����������������������������������������������������������19

Data Logging with the Arduino�����������������������������������������������������������������������������20

Data Logging with the Raspberry Pi��������������������������������������������������������������������26

Summary�������������������������������������������������������������������������������������������������������������35

www.allitebooks.com

http://www.allitebooks.org


vi

Chapter 3: Physics and  Mathematics Basics�������������������������������������37

Temperature���������������������������������������������������������������������������������������������������������37

Force��������������������������������������������������������������������������������������������������������������������38

Pressure���������������������������������������������������������������������������������������������������������������39

Basic Concept of Algebra�������������������������������������������������������������������������������������40

Statistical Concepts���������������������������������������������������������������������������������������������41

Direct Compared to Inferred Measurements��������������������������������������������������������41

Summary�������������������������������������������������������������������������������������������������������������42

Chapter 4: Simple Science and  Engineering Projects�������������������������43

Buoyancy of Air����������������������������������������������������������������������������������������������������43

Arduino Buoyancy of Air Version���������������������������������������������������������������������45

Raspberry Pi Buoyancy of Air Version�������������������������������������������������������������52

Buoyancy Recap���������������������������������������������������������������������������������������������59

Demonstrating Pressure��������������������������������������������������������������������������������������59

Pressure/Force Recap������������������������������������������������������������������������������������65

Capturing Counts�������������������������������������������������������������������������������������������������65

Counts Recap�������������������������������������������������������������������������������������������������70

Summary�������������������������������������������������������������������������������������������������������������70

Chapter 5: Advanced Physics and Mathematics for Science and 
Engineering�����������������������������������������������������������������������������������������71

Basics Terms of Calculus�������������������������������������������������������������������������������������72

How Heat Transfer Works�������������������������������������������������������������������������������������72

Conduction Heat Transfer�������������������������������������������������������������������������������72

Convection Heat Transfer��������������������������������������������������������������������������������74

Radiation Heat Transfer����������������������������������������������������������������������������������76

All Three Heat Transfer Mechanisms Work Together!�������������������������������������77

Table of ContentsTable of Contents



vii

Mass��������������������������������������������������������������������������������������������������������������������78

Velocity and Acceleration�������������������������������������������������������������������������������������78

Inertia�������������������������������������������������������������������������������������������������������������������81

Momentum�����������������������������������������������������������������������������������������������������������81

Friction�����������������������������������������������������������������������������������������������������������������81

More Advanced Aspects of Calculus��������������������������������������������������������������������83

Summary�������������������������������������������������������������������������������������������������������������84

Chapter 6: Time/Condition-Dependent Projects����������������������������������85

Conduction Heat Transfer Through an Aluminum Rod������������������������������������������85

Ensure Consistency in Temperature Sensor Readings�����������������������������������90

Aluminum Rod Conduction Heat Transfer Recap��������������������������������������������94

Conduction Heat Transfer Through a Window������������������������������������������������������94

Window Conduction Heat Transfer Recap�����������������������������������������������������103

Convection Heat Transfer�����������������������������������������������������������������������������������103

Convection Heat Transfer Recap�������������������������������������������������������������������108

Zero Gravity Demonstration�������������������������������������������������������������������������������108

Zero Gravity Recap���������������������������������������������������������������������������������������118

Measuring Frictional Force Projects������������������������������������������������������������������118

Arduino Frictional Force Project�������������������������������������������������������������������119

Operational Schematic���������������������������������������������������������������������������������121

Arduino Frictional Force Recap��������������������������������������������������������������������124

Raspberry Pi Frictional Force Project�����������������������������������������������������������124

Raspberry Pi Frictional Force Recap������������������������������������������������������������131

Acceleration Projects�����������������������������������������������������������������������������������������131

Acceleration Direct to Computer������������������������������������������������������������������131

Table of ContentsTable of Contents



viii

Acceleration with Computer Recap��������������������������������������������������������������������139

Acceleration Measurement Without a Computer������������������������������������������139

Acceleration Without Computer Recap��������������������������������������������������������������148

Summary�����������������������������������������������������������������������������������������������������������148

Chapter 7: Light and Imaging Projects����������������������������������������������149

Radiation Heat Transfer��������������������������������������������������������������������������������������149

Analysis of Heat Transfer������������������������������������������������������������������������������161

Radiation Heat Transfer Recap���������������������������������������������������������������������162

Astrophotography with the Raspberry Pi Camera����������������������������������������������162

Assembling the Meade ETX-60AT and Raspberry Pi������������������������������������165

Astrophotography Meade ETX-60AT Setup Recap����������������������������������������169

Assembling the 4 1/2-Inch Reflector Telescope and the Raspberry Pi��������������169

Components Needed to Assemble the  Raspberry Pi 3  
Mounting System to the  4 1/2-Inch Telescope��������������������������������������������172

Reflector Telescope Setup Recap�����������������������������������������������������������������175

Basic Raspistill Previewing an Image with the Terminal Command Line�����������175

Using Raspistill to Capture an Image������������������������������������������������������������177

More Advanced Raspistill Input Without a Keyboard������������������������������������177

Raspistill Image Capture Recap��������������������������������������������������������������������179

Astrophotography Raspberry Pi Python GUI�������������������������������������������������������179

Initiating the GUI�������������������������������������������������������������������������������������������183

PI_SN003 Raspberry PI GUI Recap���������������������������������������������������������������184

Assembling the Raspberry Pi and Touchscreen in the Case������������������������������184

Raspberry Pi, Touchscreen, and Case�����������������������������������������������������������184

Modification of the Case and Assembly�������������������������������������������������������185

Components and Assembly of the Raspberry Pi Case Recap�����������������������188

Table of ContentsTable of Contents



ix

Camera Modifications, Camera Case, and Power Cables�����������������������������������188

Camera Modifications�����������������������������������������������������������������������������������188

Building the Camera Case����������������������������������������������������������������������������189

Final Assembly of the Camera in the Case���������������������������������������������������196

Power Cord Combination������������������������������������������������������������������������������197

Camera, Camera Case, and Power Cord Assembly Recap����������������������������197

Building the Shelf for the Meade ETX-60AT�������������������������������������������������197

Shelf Components and Assembly Recap������������������������������������������������������203

Helpful Hints Using the Telescope and Raspberry Pi�����������������������������������������203

Lessons Learned Recap�������������������������������������������������������������������������������207

Example Images and Enhancing Them Using a Video Capture GUI��������������������207

Example Images Taken with the Upgraded Meade ETX-60AT 
Astrophotography System����������������������������������������������������������������������������208

Recap of Example Images and Enhancement Techniques���������������������������217

Summary�����������������������������������������������������������������������������������������������������������217

Appendix: Reference Material�����������������������������������������������������������219

Soldering Safety�������������������������������������������������������������������������������������������������219

General Shop Safety�������������������������������������������������������������������������������������220

Manufacturing Techniques���������������������������������������������������������������������������������220

Soldering������������������������������������������������������������������������������������������������������221

Basic Arduino and Raspberry Pi Python Commands������������������������������������222

3D Printing����������������������������������������������������������������������������������������������������224

Computer-Aided Design Options������������������������������������������������������������������������225

Project Management for Engineering����������������������������������������������������������������226

Decision Analysis for Engineering����������������������������������������������������������������������226

Thermal Conductivity Coefficients���������������������������������������������������������������������227

Coefficients of Friction���������������������������������������������������������������������������������������228

Table of ContentsTable of Contents



x

Astronomy Terms�����������������������������������������������������������������������������������������������228

Specifications of the Meade ETX-60AT��������������������������������������������������������������229

Setup, Updates, and Repairs������������������������������������������������������������������������231

Helpful Books�����������������������������������������������������������������������������������������������������232

�Index��������������������������������������������������������������������������������������������������233

Table of ContentsTable of Contents



xi

About the Authors

Paul Bradt has a BS in Computer Science 

from the University of Houston–Clear 

Lake.  He currently owns a small business 

and writes books, develops code, and does 

IT support work. He has experimented 

with the Arduino and Raspberry Pi system 

and believes them to be excellent tools for 

developing an understanding of electronic 

components and hardware interaction in 

integrated systems.  He believes they are very 

useful as a teaching aid in learning computer 

programming, science, and engineering.  He likes to perform sophisticated 

troubleshooting of computer problems and has found that online 

resources can be a great help for novice users to get their experiments 

operating quickly and effectively.   

David Bradt has a BS in Mechanical 

Engineering from New Mexico State University 

with many years of experience in the 

aerospace industry and in the petrochemical 

industry.  He enjoys building and designing 

devices to measure and control systems.  He 

has found the Arduino and Raspberry Pi to be 

incredibly powerful little devices that with a 

little bit of work can do many different tasks.  

He is a big fan of Star Trek: The Original Series 

and astronomy.  



xiii

About the Technical Reviewer

Sri Manikanta Palakollu is an undergraduate student pursuing his 

bachelor’s degree in Computer Science and Engineering at SICET under 

JNTUH. He is a founder of the OpenStack Developer Community in his 

college. He started his journey as a competitive programmer. He always 

loves to solve problems that are related to the data science field. His 

interests include data science, app development, web development, 

cybersecurity, and technical writing. He has published many articles 

on data science, machine learning, programming, and cybersecurity in 

publications like Hacker Noon, freeCodeCamp, Noteworthy, and DDI 

through the Medium platform.



xv

Acknowledgments

This book would not be possible without the authors’ gaining early 

technical insight regarding the Raspberry Pi and Arduino from others. 

Jared Brank and Dennis Pate provided a lot of basic information, key 

insights, and Arduino hardware early in the process. The authors thank 

the following individuals who listened to them on many occasions and 

provided help, insight, and inspiration with their own experiences with 

the Raspberry Pi and other projects: Jeff Dunehew, Todd Franke, and Fitz 

Walker. Additionally, significant assistance with 3D printing was provided 

by Mitch Long and David Thoerig.

Producing this book would not have been possible without the 

excellent help and guidance regarding scope and early editorial reviews 

by Joanna Opaskar and Ed Weisblatt. The authors also utilized many 

ideas from Andrew Bradt and Laura Brank’s science fair experience. Most 

important was the support and advice from Andrea Bradt.



xvii

Introduction

The authors’ journey developing this book started in 2013 when they 

discovered the Arduino microcontroller. It is interesting how something big 

really starts with one step as they found the Arduino incredibly powerful. 

Users are able to program it with computer code, and then it executes its 

instructions for as long as it has power. The authors started evaluating 

various applications of the Arduino around the house and in their hobby 

endeavors. In 2017, they started experimenting with the Raspberry Pi 

minicomputer which enables users to take projects to a whole new level 

with a low-cost computer that interfaces with sensors. Since a Raspberry 

Pi is very affordable, a real computer can now be dedicated to operating a 

system permanently. While requiring some technical steps to set up, both 

of these tools can be used to gather data, automate tasks, and provide a 

lot of fun. The authors found it very satisfying to watch a device do several 

tasks, especially when they set it up. This book chronicles some science 

and engineering projects the authors developed over the past few years 

and provides helpful hints, along with a few things to avoid.

There are two primary areas of focus or goals of this book. The first goal 

is to help the reader explore the Arduino and Raspberry Pi. The second 

goal is exploring science and engineering in interesting and fun ways.

The projects and concepts in this book are meant to accomplish 

the first goal by providing information to get an Arduino or Raspberry 

Pi system set up, running, and ready to capture data. The text provides 

enough detail for users with average assembly or electrical skills to 

complete them. Additionally, the goals of learning are to gain knowledge 

and skills. When the reader engages in a project that requires them to 

try new things, it reinforces how they learn and gain confidence and 

encourages them to try even more complex tools and techniques.



xviii

The second goal is exploring concepts of STEM (Science, Technology, 

Engineering, Mathematics) and working through examples to demonstrate 

basic scientific and engineering concepts. Finally, the authors provide 

some detail on the mathematics needed to understand and explain the 

science demonstrated.

Science and engineering provide critical skill sets for the modern world 

that can be used in everyday life. People use these skills to develop the 

technology that the modern world relies on. This book can establish these 

skill sets for a fruitful and rewarding career.

The authors hope this book inspires the reader to expand and explore 

their own STEM projects by including a wide range from beginner to 

advanced. From these examples, the reader can learn many techniques, 

tools, and technologies and apply them beyond the ones listed here; but 

first, the authors introduce STEM.

�What Is STEM?
STEM (Science, Technology, Engineering, Mathematics) is a program 

based on educating students in science, technology, engineering, and 

mathematics in an integrated, interdisciplinary approach to learning.

School systems today strive to improve education in STEM. This goal is 

an area where educators can use outside help developing and improving 

students’ knowledge when they actively contribute, design, and build 

hands-on projects. In many ways, the young mind is excited and motivated 

building projects. They develop an in-depth understanding of what is 

required and how it works. The authors believe this is the best way to learn 

and remember these concepts, which results in a solid STEM foundation 

for students.

A question not often understood is how the scientific method is different 

from an engineering approach. Understanding the difference between 

science and engineering can be seen in the original Star Trek series.  

IntroductionIntroduction



xix

Mr. Spock was the science officer, and Montgomery Scott (Scotty) was 

the chief engineer. Their jobs and how they approached new scenarios 

or problems really provide a great explanation about the differences 

and similarities between science and engineering. Let’s examine some 

examples.

Mr. Spock used the term fascinating when describing a new event 

or phenomenon. The role of science is to expand knowledge and 

investigate new events. This fascination with new and unique areas is 

key for a scientist. Scotty, the engineer, on the other hand always had to 

fix the warp engines, the transporter, or some other critical system. The 

normal role of an engineer is to develop and implement solutions to 

problems. In one of the episodes, Scotty indicated he would rather read 

his engineering journals to learn about how others solved problems 

than go on shore leave!

�Science
Researchers use the scientific method as a tool to understand questions 

in their area of interest. Based on the information they have initially, 

they develop a hypothesis and then methods to test the validity of the 

hypothesis. When sufficient test data are gathered and analyzed, the 

researcher either accepts or rejects the hypothesis. In many cases, positive 

or negative results point to the next step or direction of exploration and 

contribute to the general body of scientific and engineering knowledge.

�Engineering
The primary goal of engineering is to evaluate alternatives and choose 

the optimal solution to minimize or eliminate specific problems or issues. 

Solutions are not necessarily new, but may be repurposed concepts 

applied to different problem areas. Other aspects of engineering include 

IntroductionIntroduction



xx

planning the work, selecting components to meet requirements, and 

following through on managing and completing a project. Often projects 

or systems fail because the planning, scheduling, and logistics of activities 

are not adequately engineered for an optimum solution. These skills are 

important and necessary in any job.

Science and engineering use many of the same tools and techniques, 

but it is important to understand the distinction between scientific 

experimentation and the engineering process of developing optimal 

solutions. For one thing, they both use the language of mathematics to 

describe percentages, results, probability, and other physical parameters. 

However, science’s goal is to expand knowledge which is different than 

engineering’s goal of selecting an optimum solution and proceeding with 

solving the problem. One other difference is a scientific test often gains 

new knowledge, whereas an engineering test often demonstrates how a 

system performs a function. In many ways, they are synergistic as science 

often provides new tools and ideas for engineers to use to solve problems.

In the authors’ minds, the roots of some key technological 

advancements that exist now can be traced back 50 years to the original 

Star Trek TV show. For example, in the show, they used tricorders to gather 

data about aliens, equipment failures, medical problems, and a host of 

other out of this world challenges. They had communicators that allowed 

them to contact crewmembers all over alien worlds. Finally, they had the 

replicators that allowed them to produce any type of food they desired. 

Today we don’t have tricorders, but we do have some examples that 50 

years ago would have been amazing. Today there are personal computers, 

cell phones, 3D printing, and incredible sensors based on the early 

transistors of the 1960s. The Arduino and the Raspberry Pi, two examples 

of new technology, can be built into devices similar to the incredibly 

versatile Star Trek tricorders.

IntroductionIntroduction



xxi

Both Mr. Spock and Scotty realized they needed each other (science 

and engineering) to accomplish the goals of exploration and keep 

the Enterprise flying safely through space. In today’s complex world, 

integrating science and engineering is key to researching problems and 

developing solutions.

In the following chapters, the authors will demonstrate all of the 

components of STEM needed to research scientific questions, use new 

technology (Arduino and Raspberry Pi), employ engineering techniques, 

and use mathematics to quantify the scientific data. As Star Trek boldly 

went forth to explore new worlds, the authors hope the students of today 

do the same!

IntroductionIntroduction



1© Paul Bradt and David Bradt 2020 
P. Bradt and D. Bradt, Science and Engineering Projects Using the Arduino and Raspberry Pi,  
https://doi.org/10.1007/978-1-4842-5811-8_1

CHAPTER 1

Key Technology Tools
This chapter will highlight some of the basics about the Arduino and the 

Raspberry Pi. It will help the reader get started if they are unfamiliar with 

these powerful devices. It is amazing what these devices can do and this 

chapter provides some basic aspects for getting them set up to run.

�Arduino Basics
The Arduino is a powerful microcontroller that is ready to program and 

acts as an intermediary device between a personal computer and various 

sensors. It is relatively new technology that is a great tool for gaining 

insight into physical properties and other scientific parameters.

The Arduino board was first developed in Italy in 2004 as a tool to help 

train students in programming. It is an open source tool and as such has 

developed a large base of helpful web sites and user groups. It represents 

a breakthrough as an easy-to-use, relatively inexpensive, programmable 

interface between a computer and various sensors. The software 

development package and all of the online resources help make this an 

ideal data logging tool for science fair/college projects.

The Arduino, Adafruit, SparkFun, Hacktronics, and other web sites are 

great places to start. There are also several introductory books to help the 

researcher get started using this device. Getting started with Arduino by 

Banzi is a very good beginner’s book on Arduino.

Other sources of information for the Arduino novice are maker faires 

and user group activities.

https://doi.org/10.1007/978-1-4842-5811-8_1#ESM


2

There are several versions and sizes, but for the projects in this book, 

the Arduino Uno and the Integrated Development Environment (IDE) 

version 1.89 were utilized. Figure 1-1 shows an example of the Arduino 

Uno. The authors recommend for the person unfamiliar with Arduinos 

to use an official version and not a clone. The authors have never 

experienced a problem with an official Arduino, but there are many clones, 

and the authors have experienced problems with one of them.

Figure 1-1.  Arduino Uno

�Arduino Setup
Setting up an Arduino is relatively straightforward; the reader should 

follow these basic steps to get the device running:

	 1.	 The Arduino is connected to a computer via a USB 

connection to the input port (see Figure 1-3).

	 2.	 Load code using the IDE (see Figure 1-2).

	 3.	 Open the serial monitor to get data.

These steps sound basic, and after the reader completes these steps a few 

times, they will see how easy it is to connect and run an Arduino. In many cases, 

Chapter 1  Key Technology Tools



3

the challenges occur with the code. If the reader is copying code from a source, 

it is important to type it in exactly as it looks. Even then there could be errors, but 

that is part of the adventure, and it’s very rewarding when the code runs.

Figure 1-2.  Arduino IDE

�Ports and Interfaces
Figure 1-3 shows the main ports of the Arduino Uno.

Chapter 1  Key Technology Tools



4

There are five primary port groupings that are used to connect to the 

Arduino:

Computer port: This is the primary port that is 

directly connected to the computer. It is a micro-

USB port that powers and enables the user to 

upload the sketches or programs to the Arduino.

Battery power port: This port allows an Arduino 

to be unplugged from a computer and use battery 

power to operate. A standard wall power supply that 

provides 9–12 V DC can also be used.

Sensor power ports: These plug connections 

provide 3.3 V and 5 V DC power. There is also a reset 

connection and input voltage connection.

Analog device ports: These connections are for 

analog inputs.

Digital device ports: These are for digital inputs 

and outputs.

Figure 1-3.  Arduino Ports

Chapter 1  Key Technology Tools



5

IDE (Integrated Development Environment):  
The IDE is the program that is used to develop the 

code. It is the programming tool that runs on a 

computer and has features to help the developer 

write code. The IDE tool must be downloaded from 

the Arduino web site.

Sketch: The code that runs on an Arduino is called 

a sketch. Once the code is developed in the IDE, it is 

uploaded to the Arduino.

Libraries: These are code modules that are installed 

on the Arduino and called up by the program when 

needed. Libraries add a lot of functionality and do 

not require any additional coding.

There are other components and hardware that can be used with the 

Arduino:

Shields/breakout boards: These are add-on boards 

that are either inserted into the standard Arduino 

board ports or connected via wires.

Sensors: A sensor is a device that senses some type 

of data. It can be used to directly measure a physical 

aspect, or it can be used with some mathematics to 

infer a physical measurement.

Effectors: An effector imparts some change in the 

physical world when activated. Motors, solenoids, 

and servos are some examples.

LCDs: Liquid Crystal Display can be used to show 

data.

LEDs: Light-Emitting Diodes or other incandescent 

lights can also indicate an event has occurred.

Chapter 1  Key Technology Tools



6

�Lessons Learned About the Arduino
The Arduino is relatively easy to use, but the authors found there are a few 

key points that will help when using this powerful device:

•	 Each Arduino attaches to a specific com port. The port 

may have to be changed or selected in the tools tab 

under “port” to get the IDE to recognize the Arduino.

•	 If the code is being pasted into the IDE, do not copy 

from Microsoft Word or another word processor. First, 

put it in a text editor such as Notepad, Notepad++, 

or some other C/C++ IDE editor and then copy it 

from there. Important note: Notepad and Notepad++ 

are not development tools like the IDE. One other 

very important item of note is when the code was 

transcribed into the book format some of the code text 

that must be on one line may show up on two lines in 

this book. The authors have tried their best to highlight 

the code that should be on one line in the IDE by 

bolding it in the Listing. Please contact the authors if 

there are questions at contact@pdanalytic.com.

•	 It is a good idea to test the devices with a basic program 

to be sure they work, before moving to a more complex 

program.

•	 If the final code is complex, get each piece of code 

working before adding more modules. This way, it is 

easier to find the module where the problem is located.

•	 The authors recommend for long timing events or 

complex programs to not use the “delay command,” 

because it locks the Arduino and prevents it from doing 

anything else. Instead, use the “milli command” that 

Chapter 1  Key Technology Tools



7

tracks time intervals between events and still allows 

other actions to occur. The milli code might be a little 

more complex, but it allows the Arduino to perform 

other functions simultaneously. Using the delay 

command for short events or simple programs like 

the ones in this book, such as a switch debounce, is 

recommended.

•	 A feature built into the Arduino IDE is the “auto-format 

command.” It can be found under the tools tab or using 

“Alt+T.” This command helps identify missing items and 

also helps organize the code for improved readability.

•	 One more key aspect of Arduino coding is the “loop 

command.” There are a few different types, but common 

ones such as “void loop” and the “for command” 

perform several operations and then repeat them.

•	 Check the wiring twice before applying power. It can be 

difficult to see which port a wire is plugged into when 

there are several wires.

•	 It is hard to know what code is on an Arduino. One easy 

way that helps determine what is loaded on an Arduino 

is saving code with a descriptive name, date, and even 

time information. This helps programmers who may 

need to go back to a previous code version.

•	 One other very helpful trick is to put the descriptive 

name of the code on a piece of tape and stick it on top 

of the computer port. This helps when working on, or 

programing, several different Arduinos.

•	 One of the advantages of the Arduino is that once it is 

programmed, it remembers the code. When a power 

source is plugged into the battery power port, it will 

Chapter 1  Key Technology Tools



8

operate the Arduino. According to the Arduino web site, 

any power source that can supply 9–12 V DC, 250 mA, or 

more will work. The plug must be 2.1 mm with the center 

pin providing positive voltage and the exterior of the plug 

the negative terminal. Some power supplies do not deliver 

enough current or do not provide stable power. If an 

Arduino is behaving strangely, try a different power supply.

•	 Some programs need special ways to use and 

communicate with the Arduino. To do this, the reader 

should understand these special connection ports on 

the Arduino Uno: analog A5 is the SCL (Clock port) and 

A4 is the SDA (Data port).

�Raspberry Pi Basics
The Raspberry Pi 3 is a powerful minicomputer. This piece of technology 

comes with a lot of features like any other modern computer. It is an 

experimental/hobbyist device developed around 2011 in the United 

Kingdom to teach programming. For its low cost, it has many capabilities 

and allows the user to configure it in many ways. There are several models 

on the market. For this book, the authors choose the Raspberry Pi 3 

Model B V1.2 (Figures 1-4 and 1-5). There is a new Raspberry Pi 4 that 

was recently released that has more features. The authors researched the 

setup and use of the Raspberry Pi 4, and it appears to be the same as the 

Raspberry Pi 3. We believe these projects will work the same if you have a 

Raspberry Pi 4.

Chapter 1  Key Technology Tools



9

Once the Raspberry Pi 3 is up and running, it is just like a normal 

personal computer. It has a graphical user interface (GUI) similar to any 

computer that enables you to open programs or files with the click of a 

mouse. It uses a version of the Linux program for the operating system 

(OS) called Debian, so it is a bit of a hobbyist machine and occasionally 

may have an issue. There are a lot of online resources to find help.

Figure 1-4.  Raspberry Pi

Figure 1-5.  Raspberry Pi Ports

Chapter 1  Key Technology Tools



10

The Raspberry Pi 3 has a 1.2 GHz 64-bit quad-core CPU, 1 GB RAM, an 

integrated wireless connection, four USB ports, an Ethernet port, and an 

HDMI connection. It is a truly powerful device for only ≈ $25. The Raspberry 

Pi 4 has a 1.4 GHz 64-bit quad core CPU, options of 2, 4, 8 GB RAM and 

costs from $35 to 75. The Raspberry Pi 4 will run hotter than the Pi 3 and it is 

recommended to have a cooling fan but it is faster.

�Raspberry Pi Setup
These are the general steps to set up the Pi:

	 1.	 Insert the SD card.

	 2.	 Plug in the monitor.

	 3.	 Plug in the keyboard.

	 4.	 Plug in the mouse.

	 5.	 Start the system.

The authors recommend that the reader do all their programming in 

versions of Python 3.X or later. The exception to this recommendation is if 

the reader has legacy code that runs on an earlier version like Python 2.7.X.

Some projects in this book require additional modules to run. The 

“pip” command is typed into the terminal area to install code modules. 

The reader should be aware that the pip command installs a module in the 

base Python area, which may be specific to Python 2.7.3. If the reader has 

upgraded to or is using a newer version of Python, they will need to use 

pip3 or Python 3.

Operating the Raspberry Pi is much like a personal computer. It has a 

GUI along with several programs such as a spreadsheet, word processor, 

and other built-in items. Figure 1-6 provides an example of the interface.

Chapter 1  Key Technology Tools



11

For the purposes of this book, the authors will focus primarily on how 

to connect sensors to the Raspberry Pi and get data out of them. There are 

many other uses for the Raspberry Pi that will not be covered in this text.

Figure 1-7 shows the General-Purpose Input/Output or GPIO pins, 

although it may not be easy to determine the pin number on the Raspberry Pi. 

A ribbon cable is also shown that connects to a nice interface board made 

by MCM. This interface board has pin numbers and makes it a lot easier to 

connect sensors to the Raspberry Pi. More about this in the next chapter.

Figure 1-6.  Raspberry Pi GUI with Spreadsheet

Chapter 1  Key Technology Tools



12

The GPIO pins include several 5 V, 3.3 V, ground, and input/output 

ports.

There are several special ports on the GPIO pins. These are very important 

for the Raspberry Pi to communicate via Serial Peripheral Interface (SPI) 

protocol with other devices like an analog to digital converter (ADC). For the 

Raspberry Pi 3, pin 23 is the GPIO SPI clock connection; this is also called 

GPIO11. The next two special connections are pin numbers 19 and 21. Pin 

19 is the data in connection termed Master Out Slave In (MOSI), also called 

GPIO10. Pin 21 is the data out connection termed Master In Slave Out (MISO), 

also called GPIO9. The final connection is pin 24 and it is the chip enable 

(CE0) connection. There are a lot of confusing descriptions and diagrams on 

the Internet regarding these connections, but once the authors understood 

what these four connections were used for, it started making sense.

Many resources are available online, and the following books were 
helpful in explaining the Raspberry Pi and its features. Beginner’s Guide to 
Raspberry Pi published by BDM Publications, Raspberry Pi: The Complete 
Manual published by Image Publishing, Learn Raspberry Pi Programming 
with Python published by Apress, and The Python Coding Manual 
published by BDM Publications are good resources.

Figure 1-7.  GPIO Pins on the Raspberry Pi

Chapter 1  Key Technology Tools



13

The following are some Raspberry Pi terms and definitions:

GUI: Graphical user interface, a user interface 
that allows interaction with computers or other 
electronic devices through graphical icons or visual 
pointers.

HDMI: High-definition multimedia interface is the 
standard connection for high-definition (HD) and 
ultra-high-definition (UHD) equipment.

Debian Linux: Operating system that is similar to 
Linux and is composed entirely of free software. The 
group which maintains it is called Debian.

Python: A programming language for general-
purpose programming that was created in 1991 by 
Guido van Rossum.

Raspberry Pi IDE: Some of the graphics in this 
book may show the Python 3.5.9 interface; others 
show the Thonny interface which has Python 3.7 
embedded in it.

Tkinter: This program or module is included in 
Python and is a great tool to develop GUIs for the 
Raspberry Pi.

sudo raspi-config: Command typed into the 
terminal that opens the rasp-config tool. In this tool, 
the user can select the one wire, Inter-Integrated 
Circuit (I2C), or SPI protocols for connecting with 
remote devices (Figure 1-8).

Chapter 1  Key Technology Tools



14

Terminal: Program where commands are typed in 

to execute on the Raspberry Pi (Figure 1-9).

Picamera: Refers to a Raspberry camera computer code 

module.

Figure 1-8.  Raspi-config

Figure 1-9.  Terminal Interface

Chapter 1  Key Technology Tools



15

�Lessons Learned About the Raspberry Pi
The authors learned several items as they worked on these projects with the 

Raspberry Pi. The following items may help the reader set up their own systems:

•	 Keyboard configuration: The reader may find when they 

first start out and type a command in on the keyboard 

that the wrong character may show up on the screen. In 

the authors’ case, the Raspberry Pi 3 was configured for 

a keyboard in a different country. To fix this, the reader 

should visit the Stack Exchange site as most likely the 

keyboard is set for a UK version. US or other countries’ 

keyboards have a slightly different mapping arrangement.

This site has more info on this change: https://

raspberrypi.stackexchange.com/questions/236/

simple-keyboard-configuration.

•	 An important lesson the authors learned is that the 

Raspberry Pi 3 power supply needs to deliver the 

correct amount of current required. The authors 

needed two power supplies: one for the touchscreen 

and one for the Raspberry Pi. The touchscreen 

power supply did not put out enough current for the 

Raspberry Pi and caused it to crash often.

•	 Timing issue: You may notice that if you want precision 

control of timing, the Raspberry Pi program may be off 

by a few milliseconds. This is partially due to Raspberry 

Pi not being a real-time system and partially due to 

Raspberry Pi’s Linux-derived operating system (OS) 

overhead. You can find many examples of real-time 

systems in the real world. One example of a real-time 

system is how a microwave, when the door is opened, 

immediately shuts off so that the person operating it is 

Chapter 1  Key Technology Tools

https://raspberrypi.stackexchange.com/questions/236/simple-keyboard-configuration
https://raspberrypi.stackexchange.com/questions/236/simple-keyboard-configuration
https://raspberrypi.stackexchange.com/questions/236/simple-keyboard-configuration


16

not exposed to harmful microwaves. Real-time systems 

have to be able to react rapidly to interrupts. This is 

different from a personal computer, generally known 

as general-purpose system, an OS where interrupts 

don’t take priority due to how the chipset is designed. 

General-purpose systems provide multiple functions 

which take some minimum amount of time to execute. 

All general-purpose OSs have some form of overhead 

that comes in various forms from longer boot-up time 

to latency between receiving an interrupt event for a 

new unscheduled task. The Arduino operates closer to 

real time, so if the reader needs to know the time data 

is taken, then they might want to consider using the 

Arduino instead of the Raspberry Pi.

•	 One other key difference between the Raspberry Pi and 

the Arduino is the voltage needed to power them. The 

Raspberry Pi uses 5 V DC. The Arduino can use 9–12 V 

DC. It is critical not to use a power supply meant for an 

Arduino on a Raspberry Pi; it will damage it.

•	 Unlike the Arduino, the Raspberry Pi does not have a 

built-in analog to digital converter. Therefore, when 

using analog sensors, the reader may need to place an 

analog to digital converter between the sensor and the 

Raspberry Pi.

•	 The Raspberry Pi will need to be configured for either 

an I2C device or Serial Peripheral Interface (SPI). The 

following steps can configure the Raspberry Pi for I2C 

or SPI:

•	 Run sudo raspi-config in the terminal window.

•	 Use the down arrow to select 5, Interfacing Options.

Chapter 1  Key Technology Tools



17

•	 Arrow down to P4 SPI or P5 I2C.

•	 Select yes to enable the correct protocol.

•	 Many Raspberry PI programs use modules. Some 

of these modules are included in the Python code 

like Tkinter. This is used in the astrophotography 

project. Other modules are not included, in particular, 

Adafruit_GPIO.SPI and Adafruit_MCP3008, which are 

used in several projects in this book.

•	 When installing modules like Adafruit_GPIO.

SPI and Adafruit_MCP3008, the user must ensure 

they are installed in the correct folder. Use pip3 or 

pip2 depending on the version of Python on the 

Raspberry Pi.

•	 The Raspberry Pi may come with an SD card with the 

operating system. However, the reader may download 

the operating system and install it on an SD card. When 

formatting an SD card for the Raspberry Pi operating 

system, run the Guiformat program to create an exFAT 

(also known as 32-bit FAT) SD card and leave all 

options at default. This web site has some helpful info:

www.raspberrypi.org/documentation/

installation/sdxc_formatting.md.

•	 Finally, the authors used two different programming 

tools on the Raspberry Pi. They are Python3 and 

Thonny. They seem to behave very similar and have 

very similar graphical user interfaces.

Chapter 1  Key Technology Tools

http://www.raspberrypi.org/documentation/installation/sdxc_formatting.md
http://www.raspberrypi.org/documentation/installation/sdxc_formatting.md


18

�Basic Electronics Definitions
The projects in this book include some basic electronic methods and 

devices. The following definitions may be useful if the reader is new to 

electronics:

Current: Flow of electrons in a circuit. Units are in amps or milliamps.

Integrated circuit: The integrated circuit ushered in the modern era 

of electronics. The concept is adding components to a single device which 

decreases size, increases speed, and lowers the cost of manufacturing. The 

Arduino and Raspberry Pi have several integrated circuit chips on them.

Resistor: Device that resists the flow of electrons in a circuit. Units are 

in ohms. The symbol is an omega (Ω). The force sensor used in this book 

is a variable resistance device that as the force is increased, the resistance 

decreases.

Transistor: This component is key to most modern electronics. Several 

of the temperature-measuring devices used in this book are a transistor. 

They normally have three connections: power, ground, and signal. As the 

temperature changes, the signal output changes proportionally.

Voltage: In order for current to flow through a circuit, there needs to 

be difference of energy. The measure for this is voltage, and the normal 

symbol is V.

�Summary
This chapter provides some basic information about two very powerful 

technology tools: the Arduino and the Raspberry Pi. The reader may 

want to refer back to the “Lessons Learned” sections if they run into any 

problems using the devices. Additionally, there is a lot of information 

online and answers to specific questions, along with user groups and 

maker spaces that can provide the novice Arduino and Raspberry Pi user 

answers to their questions.

Chapter 1  Key Technology Tools



19© Paul Bradt and David Bradt 2020 
P. Bradt and D. Bradt, Science and Engineering Projects Using the Arduino and Raspberry Pi,  
https://doi.org/10.1007/978-1-4842-5811-8_2

CHAPTER 2

Data Logging Basics
In Star Trek, the characters used tricorders to capture data. The technology 

we have today is not as advanced as that in Star Trek, but still very 

amazing. The next step in this book is to start using this technology to 

obtain scientific information. This chapter covers information that is very 

important for someone just starting with either the Arduino or Raspberry 

Pi and provides a few easy methods to save data using them. This is called 

data logging and is useful to save the information to be utilized at a later 

date. The STEM principles in this chapter include

Science  Measuring temperature of the environment.

Technology/Engineering  Using the Arduino, Raspberry Pi, and two 
types of temperature sensors. Gain an understanding on the difference 
between analog and digital sensors.

Mathematics  Programming temperature conversions and graphing 
the data.

While the reader may want to skip this chapter and go on to other more 

advanced projects, it is recommended to look over these projects and try 

them if the reader is unfamiliar with the Arduino or Raspberry Pi.

https://doi.org/10.1007/978-1-4842-5811-8_2#ESM


20

�Data Logging with the Arduino
The easiest method shown in this book to log and capture data is to set 

up an Arduino to send data to the computer. Then use the IDE serial 

monitor to observe and save the data. Once the correct data is obtained, it 

is easy to copy using “Ctrl+C” after it is highlighted and then paste it into a 

spreadsheet or another document.

The parts needed are relatively straightforward to use the Arduino Uno 

and the serial monitor to gather data from a simple temperature sensor. 

The sensor used in this project is the MCP9700. It is a relatively inexpensive 

device and in this case is configured just like a standard transistor. This 

device is an analog sensor, which means the output is directly related to 

temperature and it can vary infinitely over the range. There is a flat side, and 

the leads must be connected as shown in Figures 2-1 and 2-2.

The parts needed are

•	 Arduino Uno

•	 MCP9700 temp sensor (output is 10 mV per oC with a 

500 mV offset)

•	 Miscellaneous wires to connect to the sensor

Figure 2-1.  Arduino and Basic Temperature Sensor

Chapter 2  Data Logging Basics



21

Listing 2-1 provides the basic code that the user will need to upload via 

the IDE. This code outputs the data in degree Celsius along with the raw 

data from the sensor.

Figure 2-2.  Arduino and Temperature Sensor Schematic

Chapter 2  Data Logging Basics



22

Listing 2-1.  Arduino SN102 MCP9700 Temperature Sensor Code

//SN102_Temperature

//Original code modified from Arduino Projects to

//Save the World

// Published by Apress

//Part 1 set up of parameters

int ADC0;

int MCPoffset = 500;

//Part 2 Sets serial port communication

void setup(){

  Serial.begin(9600);

  Serial.print("SN 102 Output Temp in C 5 sec: ");

  Serial.println(" ");

}

//Part 3 Gets data, converts to Temperature

//Sends the information to the serial port

void loop() {

  getADC();

  float temp0 = calcTemp(ADC0, MCPoffset);

  float Mvolt = ADC0;

  Serial.print("Temp in C ");

  Serial.print(temp0,0);

    Serial.print("\t Raw Input ");

  Serial.print(Mvolt,0);

  Serial.println(" ");

  delay(5000);

}

void getADC() {

  ADC0 = analogRead(A0);

Chapter 2  Data Logging Basics



23

}

float calcTemp (int val,int offset) {

  return((val*4.8828)-offset)/10;

}

The preceding code has three main parts. They are labeled as Parts 1, 

2, and 3. The first part sets up parameter which is MCPoffest for this type 

of temperature sensor. The second part starts up the serial port. The third 

part of this code starts the loop that gets the data from the sensor, converts 

the data from the sensor to Celsius temperature, and then posts it to the 

serial monitor.

The best way for the reader to learn the symbols and the code language 

is to try several simple pieces of code, Blink being one which is located in 

the Arduino examples folder in basics. This simple code does not require 

any wiring; it blinks an LED that is located on the Arduino. Gaining 

experience and looking at these simple pieces of code gets the reader on 

the path of acquiring the ability to read code.

Also note in the preceding code the symbol // is used to comment out 

a line so it does not run. This is helpful to explain the code and document 

aspects.

Once the Arduino is running, it is easy to access the data from its serial 

USB connection to the computer. Simply click the Serial Monitor button on 

the Arduino IDE tool as seen in Figure 2-3.

Chapter 2  Data Logging Basics



24

An example of serial data from Arduino is shown in Figure 2-4. Note it 

is highlighted which allows it to be copied using “Ctrl+C” and then pasted 

into another file using “Ctrl+V.” The investigator may need to unplug the 

Arduino and stop the data coming across the serial port to capture it as 

it will continue to update as long as the Arduino has power. Figure 2-4 

exemplifies the type of data and information sent over the serial port to 

the computer using Arduino as the bridge. The investigator can tailor the 

information inside the Arduino program so that the important data can be 

selected, formatted, and sent over the serial line to the computer.

Figure 2-3.  Serial Monitor in the Arduino IDE

Chapter 2  Data Logging Basics



25

A new feature in the Arduino IDE serial monitor is the ability to have it 

apply a time stamp each time data is taken. This does not require any code 

and makes it very easy to capture this information.

After copying the data and inserting it into a spreadsheet, the user 

needs to select how to limit (increment) the data. This means how 

the data is separated so the spreadsheet determines how to place it in 

individual cells.

Once copied and pasted into a spreadsheet, it can be displayed as a 

graph. Figure 2-5 shows what a common graph looks like in Excel or any 

other spreadsheet program.

Figure 2-4.  Highlighted Data in the Serial Monitor

Chapter 2  Data Logging Basics



26

Another method of data logging will be discussed in a later chapter 

using a data logging shield. This board allows the user to set up the Arduino 

so it will collect data and save it in a file on an SD card on the shield without 

being connected to the computer. The SD card can be removed later from 

the Arduino shield to download the data to the computer.

�Data Logging with the Raspberry Pi
The Raspberry Pi is a very low-cost technological breakthrough in a 

real personal computer that provides a lot of options for capturing and 

managing data. In this example, the authors will demonstrate how to 

capture and log data in a very similar way as was used on the Arduino in 

the previous section. One advantage of the Raspberry Pi is it has a built-in 

spreadsheet so that the data can stay on the device.

This project uses a different temperature sensor that is a bit more 

complex.

The parts needed are

•	 Raspberry Pi 3

•	 MCM 40-pin GPIO breakout board and cable for 

Raspberry Pi (or equivalent)

Figure 2-5.  Excel Graph of Temperature Data

Chapter 2  Data Logging Basics



27

•	 DS18B20 waterproof temperature sensor (one-wire 

temperature sensor)

•	 4.7K ohm resistor

•	 Miscellaneous wires, proto-board, and terminal strips

The company MCM makes a 40-pin GPIO breakout board that has the 

power channels set up nicely for use (Figure 2-6 shows the 5 V connection 

on the left and 3.3 V connection on the right). There are other GPIO 

breakout boards available that are similar, but this one has the 5 V and 3.3 V 

connections directly to the proto-board which is helpful.

This project uses a digital sensor. It has additional circuitry inside the 

device and outputs a digital value given the temperature. It increments 

in whole steps over the range. Since it is digital, the Raspberry Pi can 

readily accept the digital signal. The setup of the Raspberry Pi and the 

MCM breakout board connected to the temperature sensor is shown in 

Figure 2-6.

Figure 2-6.  Raspberry Pi Connected to DS18B20 Temperature Sensor

Chapter 2  Data Logging Basics



28

Figure 2-7 shows the numbering of the IO ports. The 3.3 V and ground 

can be connected to any of the ports that provide those items. Port 1 is 3.3 V 

and port 6 is a ground.

Figure 2-7.  Schematic of Temperature Sensor and Raspberry Pi

Chapter 2  Data Logging Basics



29

The following link at Adafruit has a great example to connect a one-

wire temperature sensor to a Raspberry Pi:

https://learn.adafruit.com/adafruits-raspberry-pi-lesson-11-

ds18b20-temperature-sensing

One thing that is required is to set the Raspberry Pi configuration to 

one-wire. To do that, you need to open the terminal window and then 

type in the command sudo raspi-config to open the configuration tool 

described in Chapter 1. Then scroll down and select Interfacing Options 

which is 5. Another window will open and then scroll down to select one-

wire. Select yes to enable and press Enter. In an older Raspberry Pi, you 

may need to use the Nano text editor to modify the config.txt file directly.

Listing 2-2 is the code used to scan the one-wire bus and capture the 

digital data sent to the Raspberry Pi.

Listing 2-2.  Raspberry Pi Code PI_SN001 Basic 1 Wire Code

#PI_SN001_Basic_1wire

#Basic Pi one wire Temp sensor code

#Part 1 imports code modules

import glob

import time

#Part 2 Configures and opens the device

base_dir = '/sys/bus/w1/devices/'

device_folder = glob.glob(base_dir + '28*')[0]

device_file = device_folder + '/w1_slave'

def read_temp_raw():

    f = open(device_file, 'r')

    lines = f.readlines()

    f.close()

    return lines

Chapter 2  Data Logging Basics

https://learn.adafruit.com/adafruits-raspberry-pi-lesson-11-ds18b20-temperature-sensing
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-11-ds18b20-temperature-sensing


30

#Part 3 reads the device data on the bus

def read_temp():

    lines = read_temp_raw()

    while lines[0].strip()[-3:] != 'YES':

        time.sleep(0.2)

        lines = read_temp_raw()

    equals_pos = lines[1].find('t=')

    if equals_pos != -1:

        temp_string = lines[1][equals_pos+2:]

        temp_c = float(temp_string) / 1000.0

        temp_f = temp_c * 9.0 / 5.0 + 32.0

        return temp_c, temp_f

#Part 4 prints the data in the monitor pane

while True:

    print(read_temp())

    time.sleep(1)

The preceding code consists of four parts that are labeled Parts 1, 2, 3, 

and 4. Part 1 imports the code modules that will be used. Part 2 configures 

the devices so the Raspberry Pi knows what is connected to the one-wire 

bus. Part 3 reads the device data, and then Part 4 records the value and 

sends it to the monitor pane running on the Raspberry Pi. In Part 3, the 

code takes the raw value and converts it to both degree Centigrade and 

Fahrenheit. The reader may notice the “#” symbol used in the code; this is 

a comment line and the computer ignores it. This is helpful to explain the 

code and document aspects.

To get it to run, go to Programming, open Python 3 or Thonny, find the 

file you saved it under, and open it.

Once in the program, select Run module, and then the data will start 

flowing.

Figure 2-8 shows how the code and data will look.

Chapter 2  Data Logging Basics



31

The data on the left side can be highlighted and then copied over to a 

spreadsheet.

The authors also used the Thonny development tool (see Figure 2-9) 

which is both a compiler and debugger. A code debugger is a useful feature 

which lets the reader step through what the program has in memory for 

variables and really helps find flaws in the logic.

Figure 2-8.  Code Running and Capturing Data in Python 3 
Development Tool

Chapter 2  Data Logging Basics



32

For readers who want to explore more about the Raspberry Pi and how 

it works with the one-wire devices and the I2C bus, this site has some good 

explanations and additional examples:

https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-

tutorial/all

If the reader wants to create a data storage location, Listing 2-3 takes 

the data, creates a file if it does not exist, and then saves the data to the file. 

If there is a file, it just adds the data to it. This would provide a permanent 

record of the data if the reader is capturing a lot or if the Raspberry Pi is 

running unattended. This code is structured in a very similar fashion as 

Listing 2-2 and has very similar parts.

Figure 2-9.  Code Running and Capturing Data in Thonny 
Development Tool

Chapter 2  Data Logging Basics

https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial/all
https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial/all


33

Note  Make sure The following bolded lines of code are on one line:

Listing 2-3.  Raspberry Pi Code PI_SN001B Advanced 1 Wire Code/

Data File

#Pi_SN001B

#Pi code to save data to file

#Code developed by Paul Bradt

import os

import glob

import time

from datetime import datetime

base_dir = '/sys/bus/w1/devices/'

device_folder = glob.glob(base_dir + '28*')[0]

device_file= device_folder + '/w1_slave'

sensor = 0

#To add a sensor need to change the number

def read_temp_raw():

    f = open(device_file, 'r')

    lines = f.readlines()

    f.close()

    return lines

def read_temp(sensor):

    lines = read_temp_raw()

    while lines[sensor].strip()[-3:] != 'YES':

        time.sleep(0.2)

        lines = read_temp_raw()

    equals_pos = lines[1].find('t=')

    if equals_pos != -1:

Chapter 2  Data Logging Basics



34

        temp_string = lines[1][equals_pos+2:]

        temp_c = float(temp_string) /  1000.0

        temp_f = temp_c * 9.0 / 5.0 + 32.0

        dt = datetime.now()

        sensor_Num = str(equals_pos) + " Sensor"

        return sensor_Num, dt.isoformat(), temp_c, temp_f

def main():

    while True:

        f= open("temp_sensor_readings_RevA.txt","a+")

        #a+ parameter tells open to append every time

        # the program runs.

        #Otherwise create a new file

        #Start a new for loop for each senosr here?

        lst_mixed = read_temp(sensor)

        #return as a tuple

        toWrite = ', '.join(str(x) for x in lst_mixed)

        #Add all the data from tuple into a single

        #string

        f.write(toWrite + "\n")

        print(toWrite)

        #f.write for file writing and print for

        #terminal.

        time.sleep(.3)

        f.close()

if __name__ == "__main__":

    main()

    #This is necessary to get the program to run

    #otherwise it will just execute

    #no code.run

Chapter 2  Data Logging Basics



35

The Arduino and the Raspberry Pi devices are approaching the Star 

Trek tricorder for gathering and saving data.

For those who really want to take this to the next level, this site 

describes a device built on a Raspberry Pi that resembles the Star Trek 

tricorder. It does not capture any data but instead plays videos of the 

original TV show; however, it looks incredible, and the Raspberry Pi fits 

inside the case:

www.raspberrypi.org/blog/raspberry-pi-tricorder-prop/

�Summary
These projects point out some interesting aspects regarding the MCP9700 

and DS18B20 sensors. First, the MCP9700 output is a linear relationship 

but requires an offset. The DS18B20 sensor is directly proportional to 

temperature. Another item observed is the comparison of the response 

time of the MCP9700 temp sensor and the DS18B20 waterproof 

temperature sensor. The DS18B20 is encased in a plastic cover and as such 

responds to temperature changes slower. This phenomenon is known as 

heat transfer and will be explored in later chapters. Finally, the MCP9700 

is an analog sensor which means the millivolt reading is not modified or 

converted; it provides an analog output of the actual temperature. The 

DS18B20 is termed an I2C (Inter-Integrated Circuit) device where the raw 

voltage is converted over to a digital reading. This data can then be sent 

over a digital bus to the computer along with several other devices.

The Raspberry Pi is not set up to receive analog measurements, but 

with the addition of an analog to digital converter, it can accept this type 

of data. This is described in a later chapter. As the reader can see, there are 

advantages and disadvantages to both types of sensors. In a later chapter, 

there will be a third temperature sensor utilized. It is the LM35, and it will 

be in a different package that is sealed, designated TO. Electronically, it 

behaves very similar to the MCP9700.

Chapter 2  Data Logging Basics

http://www.raspberrypi.org/blog/raspberry-pi-tricorder-prop/


36

While it is not necessary to complete these projects to proceed in this 

book, they lay the groundwork for using the Arduino and the Raspberry Pi 

tools to capture data. In particular, Listings 2-1 and 2-2 demonstrate the 

key sections of code that most of the code in this book follows. The reader 

should consider studying these examples to start to learn the language. 

When the Arduino IDE is downloaded, there is a folder created titled 

examples. In this folder, there are many pieces of code that provide a lot of 

useful examples. Studying these and other examples allows a researcher to 

start gathering data and then analyzing it or using it later. This groundwork 

will aid the reader when they develop their own or any of the other 

remaining projects.

Chapter 2  Data Logging Basics



37© Paul Bradt and David Bradt 2020 
P. Bradt and D. Bradt, Science and Engineering Projects Using the Arduino and Raspberry Pi,  
https://doi.org/10.1007/978-1-4842-5811-8_3

CHAPTER 3

Physics and  
Mathematics Basics
This chapter covers a few basic areas of physics and mathematics that 

are important for science and engineering, namely, temperature, force, 

pressure, and some general algebra/statistics concepts. Why are these 

areas so important? Because they govern the physical world and how 

many things work or behave. Understanding of these tools can provide 

the background to ways of improving life, increasing energy efficiency, 

improving products, increasing safety, and other innumerable facets of life.

�Temperature
Temperature is a measure of a physical property of all matter, and it 

represents a level of internal energy the object or material contains. 

Another way of looking at temperature is a comparison of energy levels 

within or between objects or materials. For example, a hot object has more 

internal energy than a cold object. In theory, at a temperature of absolute 

zero, there is no energy.

There are two temperature scales (English and Metric) used, and they 

have both a full-scale component and a scale that is used for everyday 

temperature measurements. The following equations highlight various 

conversions of 32 degrees Fahrenheit or the freezing point of water to other 

temperature scales:

https://doi.org/10.1007/978-1-4842-5811-8_3#ESM


38

Fahrenheit (oF) to Rankine (oR):

32°F + 459.67 = 491.67°R

Fahrenheit to Celsius:

(32°F − 32) × 5/9 = 0°C

Celsius (oC) to Kelvin (oK):

0°C + 273.15 = 273.15°K

Temperature is a key measure in how weather works and plays a 

significant role in our comfort. It is amazing how we are heating or cooling 

our home, to control its temperature, sometimes doing both in the same day!

�Force
What does force really mean and why is it critical to everything we do?

An object will not move from a state of rest unless a force acts upon 

it. Putting it simply, no movement occurs unless a force is generated by 

some means, and that force pushes or pulls an object. For example, as a 

baby learns to walk, she gains a very real lesson on how to control all facets 

of force and balance in order to get from the table to her mother. As she 

starts out, she must pay attention to the force needed to move forward. 

Otherwise, she may lose her balance and fall down. If the floor is slippery 

and she fails to keep her weight over her feet, she may not be able to keep 

from slipping and will fall down. If she does not keep moving and slows 

down, she may not be able to keep her balance, and she falls down. Over 

time we do these things without consciously thinking about them and 

are able to walk from point A to point B without incident. These basic 

constraints are inescapable and continually govern many aspects of our 

daily life.

Chapter 3  Physics and Mathematics Basics 



39

�Pressure
It is the measure of a uniform force over a given area. Figure 3-1 illustrates 

a force (F), spread uniformly over a known area (A). Given that an 

unchanging force is exerted on a surface, a reduction in surface area would 

result in an increase in pressure and, conversely, a decrease in pressure if 

the surface area were enlarged.

Figure 3-1.  Diagram Showing Pressure

Pressure = Force/Area, abbreviated as P=F/A

Metric system: Pressure = N/m2 (Newton per square 

meter)

English system: Pressure = lbs/in2 or psi (pounds per 

sq. inch)

Why is pressure important? It is a measure of true exerted force. An 

experiment later in the book shows how changing the surface area can 

really change the force an object experiences. Think about when an apple 

is being cut. When the point of the knife is poked through the skin, the 

applied pressure at the point of the knife is very high. However, it is very 

hard to cut through the skin of an apple using the whole length of the 

blade.

Chapter 3  Physics and Mathematics Basics 



40

�Basic Concept of Algebra
Algebra’s fundamental concept is the manipulation of equations 

moving the variables around to solve for a specific variable or establish 

relationships of interest. Here are some key algebraic tools:

Distributive property

Multiplying A by the expression in the parenthesis:

A × (B +C) = A × B + A × C

Manipulating an equation

A variable can be subtracted from or added to both 

sides of the equation:

If A + B = C + D + B

subtracting B from both sides yields

A = C + D

Also, a variable can be multiplied or divided on both 

sides of the equation:

7 × A = B

Then dividing by 7 on both sides yields

A = B/7

While these operations seem simple, they form the basis of setting 

up equations to solve many different variables. Using these operations 

provides a number of ways to resolve and answer many scientific or 

engineering questions.

Chapter 3  Physics and Mathematics Basics 



41

�Statistical Concepts
The authors do not go into great detail regarding statistics in this book, 

but this section is included to highlight some important basics of this 

important tool. Statistics is a method that is used to analyze the variability 

of data and research meaningful trends of large groups of data.

Arithmetic mean or average: Calculated by dividing the sum of a set of 

values by the quantity of those values.

Xaverage = (X1+X2+X3+…)/quantity of values of X

Standard deviation (Std Dev): A measure of the variance about the mean.

Std Dev = Square root of (1/N x ∑ (( Xi – Mean)2))

What is happening in the standard deviation equation? For each value, 

a difference is found from the mean value. Those differences are squared 

and summed, and finally the square root of that number is found. What is 

this actually telling us? The equation establishes a value for an expected 

“deviation” from the mean. When the analyst is looking at additional data 

gathered and sees a significant difference in standard deviation, it may 

indicate there is a problem somewhere.

Statistics is a very complex subject, and the preceding concepts are 

the basics. They do provide the groundwork for most of statistical analysis. 

If the reader is exploring a scientific or engineering career, they are 

encouraged to explore statistics in greater detail, in particular, hypothesis 

testing.

�Direct Compared to Inferred Measurements
A direct measurement is a measure of the item of interest. An example of 

a direct measurement is a voltmeter measuring voltage. An example of an 

inferred measurement is when another aspect is measured and the item of 

interest is inferred from what can be measured. In many cases, the sensors 

Chapter 3  Physics and Mathematics Basics 



42

in this book like the MCP9700 transistor temperature sensor actually 

provide an output voltage based on the temperature at the sensor. The 

temperature is an inferred measurement.

�Summary
The world is a very unique place, and the concepts outlined in this chapter 

provide the basics of some of the most important engineering tools and 

scientific concepts. The reader is encouraged to explore them further in 

later chapters along with advanced classes and studies.

Chapter 3  Physics and Mathematics Basics 



43© Paul Bradt and David Bradt 2020 
P. Bradt and D. Bradt, Science and Engineering Projects Using the Arduino and Raspberry Pi, 
https://doi.org/10.1007/978-1-4842-5811-8_4

CHAPTER 4

Simple Science and  
Engineering Projects
This chapter explains several simple science and engineering projects 

that can provide data on some basic physical properties. These are good 

projects to explore science, engineering, the Arduino, and the Raspberry 

Pi. These projects can be useful too. The first project is a small-scale 

version of a key driving mechanism of how weather works. The second 

project highlights aspects of force and pressure including how distributing 

force over a different area changes the applied pressure. The final project is 

an automated tool to capture the number of events happening over time. 

This could be useful capturing scientific data, for example, examining the 

number of meteorites during a shower or the number of lightning strikes 

during a thunderstorm. These tools are great for measuring and observing 

key scientific concepts. Fortunately, the engineering skills and techniques 

needed to build these projects is relatively easy.

�Buoyancy of Air
The first project will use two temperature sensors to track temperature 

change in two different elevations inside a house. It will demonstrate that 

hot air rises and the effect of buoyancy.

https://doi.org/10.1007/978-1-4842-5811-8_4#ESM


44

Science  Buoyancy of heated air and using one form of the ideal 
gas law.

Technology/Engineering  Using the Arduino or the Raspberry Pi 
and temperature sensors to collect data, to test methods, and to 
improve temperature distribution in a house.

Mathematics  This section explores the mathematics associated 
with density changes of air as a function of temperature. As air heats 
up and energy is added, the density decreases, and it will float on the 
colder denser air. If it is cooled, it will sink.

The mathematics associated with this project uses these variables 

with the goal of calculating the change of density based on temperature 

changes:

P = Pressure

ρ = Density

T= Temperature

R = Specific gas constant

ρ = P/(R × T)

As can be seen in the preceding equation, if the temperature (T) 

increases and the pressure is held close to constant, then the density will 

decrease which causes the warmer gas to rise. On a larger scale, the sun 

warms the Earth’s atmosphere, which causes a large mass of air density to 

decrease. This movement may result in winds and breezes. Enough of a 

temperature change and the pressure may decrease which will cause more 

wind flowing from high-pressure areas to low-pressure areas.

Chapter 4  Simple Science and Engineering Projects 



45

�Arduino Buoyancy of Air Version
This project is similar to the Arduino project in Chapter 2; however, it uses 

libraries and the I2C temperature sensor used in the Raspberry Pi data 

logging project. The code is a little more complex and uses libraries which 

are ready-to-use packages of code that are called up when needed. These 

significantly simplify the code needed. The user will need to download the 

required libraries onto their computer in the library folder.

From an engineering perspective, these are the parts shown in 

Figure 4-1 that are needed to build the Arduino version of this project:

•	 Arduino Uno 3

•	 2 DS18B20 waterproof temperature sensors

•	 4.7K Ω resistor

•	 Miscellaneous wires, proto-board, and terminal strips

•	 One piece of wood to mount the components on

Figure 4-1.  Arduino and Two I2C Temperatures Sensors

Chapter 4  Simple Science and Engineering Projects 



46

Figure 4-2 shows how the sensors were placed in the house to get the 

two readings. Figure 4-3 is the schematic showing how to connect them to 

the Arduino.

Figure 4-2.  Two Temperature Sensors

Chapter 4  Simple Science and Engineering Projects 



47

Figure 4-3.  Arduino and Two One-Wire Temperature Sensors

Chapter 4  Simple Science and Engineering Projects 



48

This code was originally found at this web site:

https://create.arduino.cc/projecthub/TheGadgetBoy/ds18b20-

digital-temperature-sensor-and-arduino-9cc806

It requires these libraries to b downloaded: One Wire and Dallas 

Temperature. If you are not familiar with Arduino libraries, then this site 

has a lot of good info:

www.arduino.cc/en/guide/libraries

SN103 Dual I2C Temp Sensors code 

The comments in Listing 4-1 (which are either after two // or between 

/* and */ ) provide good explanation of what the code is doing. When these 

are in place, the code knows to skip over them and not execute them.

Listing 4-1.  Arduino SN103_Two Sensors 1 Wire Code

//SN103_1_wire_2sensors_8_3_2019 Modified by PBradt

/*********************************************************/

// First we include the libraries

#include <OneWire.h>

#include <DallasTemperature.h>

/**********************************************************/

// Data wire is plugged into pin 2 on the Arduino

#define ONE_WIRE_BUS 2

/**********************************************************/

// Setup a oneWire instance to communicate with any

//OneWire devices

Chapter 4  Simple Science and Engineering Projects 

https://create.arduino.cc/projecthub/TheGadgetBoy/ds18b20-digital-temperature-sensor-and-arduino-9cc806
https://create.arduino.cc/projecthub/TheGadgetBoy/ds18b20-digital-temperature-sensor-and-arduino-9cc806
http://www.arduino.cc/en/guide/libraries


49

// (not just Maxim/Dallas temperature ICs)

OneWire oneWire(ONE_WIRE_BUS);

/**********************************************************/

// OneWire reference to Dallas Temperature.

DallasTemperature sensors(&oneWire);

/**********************************************************/

void setup(void)

{

 // start serial port

 Serial.begin(9600);

 Serial.println("Dallas Control Library");

 Serial.println("This is SN103");

 // Start up the library

 sensors.begin();

}

void loop(void)

{

 // call sensors.requestTemperatures()

 // to all devices on the bus

/**********************************************************/

 Serial.print(" Requesting temperatures...");

 sensors.requestTemperatures();

// Send the command to get temperature readings

 Serial.println("DONE");

/**********************************************************/

 Serial.print("Temperature0  is: ");

 Serial.print(sensors.getTempCByIndex(0));

 Serial.println("");

 Serial.print("Temperature1  is: ");

 Serial.print(sensors.getTempCByIndex(1));

Chapter 4  Simple Science and Engineering Projects 



50

 Serial.println("");

// You can have more than one DS18B20 on the same

//bus.

   // 0 refers to the first IC on the wire

   delay(10000);

}

Data was taken on a warm day, and it shows when the air conditioner 

is running, there is a lot of mixing of the air and the temperature equalizes 

out over time.

Temp 0 is 20 inches (0.5 m) from the ceiling.

Temp 1 is about 24 inches (0.6 m) from the floor.

The room is 8 feet high (2.4 m).

The distance between the sensors is 2.4 – (0.5 +0.6) = 1.3 m.

This is SN103

Requesting temperatures...13:18:33.593 -> DONE

13:18:33.593 -> Temperature0 is: 24.87

13:18:33.640 -> Temperature1 is: 24.19

13:18:43.696 -> Requesting temperatures...DONE

13:18:44.446 -> Temperature0 is: 24.81

13:18:44.446 -> Temperature1 is: 24.19

13:18:54.501 -> Requesting temperatures...DONE

13:18:55.276 -> Temperature0 is: 24.69

13:18:55.276 -> Temperature1 is: 24.19

13:19:05.331 -> Requesting temperatures...DONE

13:19:06.081 -> Temperature0 is: 24.56

Chapter 4  Simple Science and Engineering Projects 



51

13:19:06.128 -> Temperature1 is: 24.19

13:19:16.183 -> Requesting temperatures...DONE

13:19:16.932 -> Temperature0 is: 24.50

13:19:16.932 -> Temperature1 is: 24.12

13:19:26.996 -> Requesting temperatures...DONE

13:19:27.746 -> Temperature0 is: 24.37

13:19:27.793 -> Temperature1 is: 24.12

13:19:37.803 -> Requesting temperatures...DONE

13:19:38.553 -> Temperature0 is: 24.31

13:19:38.600 -> Temperature1 is: 24.12

13:19:48.633 -> Requesting temperatures...DONE

13:19:49.383 -> Temperature0 is: 24.25

13:19:49.430 -> Temperature1 is: 24.19

13:19:59.475 -> Requesting temperatures...DONE

13:20:00.213 -> Temperature0 is: 24.25

13:20:00.260 -> Temperature1 is: 24.12

13:20:10.320 -> Requesting temperatures...DONE

13:20:11.069 -> Temperature0 is: 24.19

13:20:11.069 -> Temperature1 is: 24.19

Calculation of density and summary of the data:

ρ = P/(R × T)

The starting Temperature0 of 24.87 oC is 298.02 oK.

The starting Temperature1 of 24.19 oC is 297.34 oK.

Chapter 4  Simple Science and Engineering Projects 



52

The specific gas constant for dry air is 287.058 J/

(kg·K) in SI unit

or 8.314462618 m3·Pa·K−1·mol−1.

Calculating the density and assuming a constant 

volume At 20 °C and 101.325 kPa pressure at the two 

temperatures yields the results below:

Density at T0 = P/(R x T) = 101325/(8.314462618 x 

298.02) =

40.89.

Density at T1 = P/(R x T) = 101325/(8.314462618 x 

297.34) =

40.99.

The preceding calculations show that at T0 the air is approximately 

0.24% less dense than at T1; therefore, that piece of air will rise and float on 

top of the colder dense air. Once the air conditioner blows the air around, 

it pushes colder air down, but eventually there is enough mixing that the 

temperature between the two locations mixes and evens out.

�Raspberry Pi Buoyancy of Air Version
This project uses the Raspberry Pi and the LM35 temperature sensor to 

also capture the temperature difference at two heights in a house. One 

other item that is needed is an analog to digital converter (ADC). This is 

needed because the LM35 sensor is an analog device, but the Raspberry Pi 

only accepts digital inputs.

The parts needed are

•	 Raspberry Pi 3

•	 MCM 40-pin GPIO breakout board and cable for 

Raspberry Pi (or equivalent)

Chapter 4  Simple Science and Engineering Projects 



53

•	 2 LM35 sensors that are connected to a wire harness 

(see Appendix)

•	 MCP3008 analog to digital converter (ADC)

•	 Miscellaneous wires, proto-board, and terminal strips

The authors found a lot of confusing information online regarding the 

use of the Raspberry Pi and the MCP3008 ADC. They found the following 

code which works well as long as its SPI configuration matches the pins 

on the Raspberry Pi. One of the confusing aspects in the documentation 

on the Internet regarding connecting to the ADC is the connections 

to GPIO. There are four key connections and multiple designations. 

The first one is pin number 23. This is also designated GPIO11 and the 

SPI SCLK clock connection. The next key connection is pin 24, and its 

other designations are GPIO8 and SPI CE0 or chip enable. Another key 

connection is pin number 19, also designated GPIO10 or SPI MOSI. The 

final key connection is pin number 21, also designated GPIO9 or SPI MISO. 

Keeping these key connections in mind and understanding the multiple 

designations will help to ensure the reader will get this powerful tool 

connected and running. The MCP3008 ADC can accept up to eight sensor 

inputs.

Figure 4-4 shows the assembled unit with the MCM 40-pin GPIO 

breakout board and the MCP 3008 ADC.

Chapter 4  Simple Science and Engineering Projects 



54

Figure 4-5 shows the sensor assembled to a small circuit board and 

then the heat shrink tubing placed over it to insulate and protect the device 

from inadvertent shorts of the wires.

Figure 4-4.  Raspberry Pi Setup to Measure Air Temperature

Chapter 4  Simple Science and Engineering Projects 



55

Figure 4-6 is the schematic that shows how to connect the Raspberry Pi 

with the ADC and then the LM35 temperature sensors.

Figure 4-5.  LM35 Sensor Assemblies

Chapter 4  Simple Science and Engineering Projects 



56

Figure 4-6.  Raspberry Pi, A to D Converter, and Two LM35 Sensors

Chapter 4  Simple Science and Engineering Projects 



57

The basis for this code (Listing 4-2) was found on this Raspberry Pi 

web site. There is a bit of discussion regarding A to D converters that the 

reader might find helpful:

www.raspberrypi.org/forums/viewtopic.php?t=221972

Note  The five lines of bold code below are each on one line in the 
program:

Listing 4-2.  Raspberry Pi Code PI_SN002A Two Analog 

Temperature Sensors

#Pi_SN002A

# Simple example of reading the MCP3008 analog input # channels

# Convert to Temperature.

# Original code from Author: Tony DiCola

# Modified by Paul Bradt

# License: Public Domain

import time

# Import SPI library (for hardware SPI) and MCP3008

# library.

import Adafruit_GPIO.SPI as SPI

import Adafruit_MCP3008

# Software SPI configuration:

CLK  = 23

Chapter 4  Simple Science and Engineering Projects 

http://www.raspberrypi.org/forums/viewtopic.php?t=221972


58

CS   = 24

MISO = 21

MOSI = 19

mcp = Adafruit_MCP3008.MCP3008(clk=CLK, cs=CS, miso=MISO, mosi=MOSI)

# Hardware SPI configuration:

# SPI_PORT   = 0

# SPI_DEVICE = 0

# mcp = Adafruit_MCP3008.MCP3008(spi=SPI.SpiDev(SPI_PORT, SPI_DEVICE))

print('Reading MCP3008 values')

# Print nice channel column headers.

print('| {0:>4} | {1:>4} | {2:>4} | {3:>4} | {4:>4} | {5:>4} | 

{6:>4} | {7:>4} |'.format(*range(8)))

#print('-' * 57)

# Main program loop.

while True:

    # Read all the ADC channel values in a list.

    values = [0]*8

    for i in range(8):

        # �The read_adc function will get the value of # the 

specified channel (0-7).

        values[i] = mcp.read_adc(i)

    #Math for converting raw digital value into F/C

    #Temperatures

    values[2] = values[0]/1023.0*330.0

    values[3] = values[1]/1023.0*330.0

    values[4] = (values[2]*9/5+32)

    values[5] = (values[3]*9/5+32)

Chapter 4  Simple Science and Engineering Projects 



59

    �print('| {0:>2} Raw 1| {1:>2} Raw 2| {2:>2} C for 1| {3:>2} 

C for 2| {4:>2} F for 1| {5:>2} F for 2|'.format(*values))

    # Pause for half a second.

    time.sleep(0.5)

The Raspberry Pi version provides another way to gather data to 

observe and monitor buoyancy of air, temperature changes, and how well 

the air mixes when the air conditioning is turned on.

�Buoyancy Recap
These two projects explore ways of demonstrating and capturing buoyancy 

of air data and provide a way to track temperatures in two different heights 

in a room. This can be utilized to observe how air mixes and evens out the 

temperature when an air conditioner or fan is running. Additionally, it may 

be helpful assessing the benefits of ceiling fans and other ways to improve 

a home’s environment.

�Demonstrating Pressure
This next project will help to clear up some of the confusion that may 

exist between force and pressure. They are related, and the mathematics 

showing this relationship will be demonstrated. The system in this 

project uses a force sensor to demonstrate how to measure force and 

applied pressure on a force sensor. It also demonstrates the concept of 

distributing a load over different areas. This concept of changing loads 

by changing the area is key to many civil and mechanical engineering 

problems.

Chapter 4  Simple Science and Engineering Projects 



60

Science G ain an understanding of the difference between the 
principles of pressure and force.

Technology/Engineering  Using the Arduino and a force sensor.

Mathematics  Converting the sensor voltage reading to pressure 
based on the sensor’s calibration.

The parts needed are

•	 Arduino Uno 3

•	 Square force sensor resistor (Adafruit or SparkFun)

•	 10K Ω resistor

•	 Miscellaneous wires, proto-board, and terminal strips

•	 Several pieces of wood and a stack of ten pennies (or 

other coins)

Adafruit has a very good description of how this force sensor works 

along with a calibration curve showing where it is linear and indicating 

where it is not. The discussion on this site is that the force sensor is not an 

accurate device; however, it can be used to gain insight from relative force 

comparisons, in other words, comparing one measurement to another.

The Appendix section shows the technique needed to solder the wires 

to the force sensor.

Figure 4-7 shows an Arduino connected to the force sensor along with 

the stack of pennies sitting on top of a square piece of wood on the force 

sensor.

Chapter 4  Simple Science and Engineering Projects 



61

Figure 4-8 shows the schematic to connect the force sensor to the 

Arduino. The resistor is part of a voltage divider and is compared to the 

sensor’s resistance.

Figure 4-7.  Measuring Force with Arduino

Chapter 4  Simple Science and Engineering Projects 



62

The basic sketch or Arduino code contains four primary elements:

	 1.	 The first step of the program is to set up the variables.

	 2.	 The program sets up the serial port communication rate.

	 3.	 The program runs a repeating loop that cleans 

registers and then gets new data.

	 4.	 The Arduino sends data to the serial port on the 

computer.

Listing 4-3 is the code, and it reads the data from the sensor and then 

sends it over the serial line to the computer.

Figure 4-8.  Schematic of Force Measurement

Chapter 4  Simple Science and Engineering Projects 



63

Note  The follwoing bold line of code needs to be on one line in the IDE:

Listing 4-3.  Arduino SN104_Basic Force Sensor Code

//SN104 Force Sensor Basic Code
//From the article: http://bildr.org/2012/11/force-//sensitive-
resistor-arduino

int FSR_Pin = A0; //analog pin 0

void setup(){
  Serial.begin(9600);
}

void loop(){
  int FSRReading = analogRead(FSR_Pin);

  Serial.println(FSRReading);
  delay(5000);
  //delay(100); //Use this delay for zero g
  //Count is in msec adjust here to slow down the
  //output for easier reading

}

For those who want to modify and improve the code, the following is 

an example of how you might convert the direct reading from the sensor 

to pressure. The factors and size of the interface may need to be adjusted 

based on what the researcher uses. This code uses the double function 

which is needed when the Arduino is doing detailed calculations.

This modified code (Listing 4-4) converts the output to a pressure 

reading of pounds per square inch.

Note  The code that is bold below is on one line and should not 
overwrap when typed into the IDE.

Chapter 4  Simple Science and Engineering Projects 



64

Listing 4-4.  Arduino Code SN104B Force Sensor Pressure Calculation

//SN104B Force Sensor and Pressure Calculation Code

//From the article: http://bildr.org/2012/11/force-//sensitive-

resistor-arduino

//Code Modified by Paul Bradt

int FSR_Pin = A0; //analog pin 0

int FSRReading;

double AnalogRatio = 44;

double weight = .055;

double area = 1.0;

double PSIresult;

void setup(){

  Serial.begin(9600);

  //Example code to convert the sensor readings with

  //area and weight you measure for

  // Pressure (in PSI) calculation.

}

void loop(){

  FSRReading = analogRead(FSR_Pin);

  PSIresult = 0;

  PSIresult = (double)( FSRReading / AnalogRatio * weight / area );

  Serial.print("FSR analog read is: ");

  Serial.println(FSRReading);

  Serial.print("PSI result is: ");

  Serial.println(PSIresult);

  delay(5000);

  //Count is in msec

  //adjust to slow down the output for easier reading

}

Chapter 4  Simple Science and Engineering Projects 



65

The data in Table 4-1 shows the relationship between the force reading 

and how it changes if it is distributed over different areas.

Table 4-1.  Analysis of the Data from Force Sensor Measurements

Test Side of Area 
Interface (inches)

Area (square 
inches)

Average Voltage 
Reading

¼ of Voltage 
Reading

1 1 1 44.8 N/A

2 0.5 0.25 159.5 40

3 0.25 0.0625 327.75 82

For example, use Test 1 as the basis for comparison. The Test 2 area is 

¼ of Test 1 (4 × 0.25 = 1). So the same force is pushing on ¼ the area, and 

the sensor would see four times the force. If we divide the reading of Test 

2 by 4, we get very close to the Test 1 reading. This is in the last column of 

Table 4-1. For Test 3, the relationship breaks down; this may have to do 

with the sensitivity of the sensor for this small area.

�Pressure/Force Recap
This project demonstrates and clarifies the difference between pressure and 

force. It demonstrates a very important concept showing how the applied 

load can be reduced by changing the area where the force interacts.

�Capturing Counts
Scientists often need to count occurrences of events and compare them 

between different hypotheses. This project will show how to capture very 

fast events and count them to monitor the number of occurrences. Some 

examples might be meteorites or lightning strikes. When things happen 

very fast and there is not enough time to mark down an event on paper, 

this project allows the reader to just push a button and record these events.

Chapter 4  Simple Science and Engineering Projects 



66

Science  If there is a need to count events to understand probability 
and likelihood of scientific data.

Technology/Engineering  Using the Arduino and a pushbutton 
switch.

Mathematics  Aspects of statistics can be utilized to understand 
likelihood of data of event occurrence.

The parts needed are

•	 Arduino Uno 3

•	 Pushbutton switch

•	 10K Ω resistor

•	 Miscellaneous wires, proto-board, and terminal strips

•	 Old-style 35 mm file canister to hold the remote switch

The right side of Figure 4-9 shows the inside of the old-style 35 mm film 

canister with the pushbutton mounted there. The cap is fastened to the 

board and then a notch cut out for the wires to pass through. This provides 

a nice grip to hold so the observer can focus on watching for events. The 

left side of Figure 4-9 shows the switch connected to the Arduino.

Figure 4-9.  Using the Arduino to Capture Count of Events

Chapter 4  Simple Science and Engineering Projects 



67

Figure 4-10 is the schematic showing how to connect the pushbutton 

switch to the Arduino.

Figure 4-10.  Schematic of Arduino Counting Events

Listing 4-5 is the code, and it is somewhat basic but captures the 

number of times a switch has been pushed, after which it sends that info 

over the serial port to the computer.

Listing 4-5.  Arduino SN105 Capturing Counts Code

//SN105_Counts_Nov_2019

//Code developed by Paul and David Bradt

int counter = 0;

//Program uses Switch to set high state and

//increments count holds high until it changes to low state.

Chapter 4  Simple Science and Engineering Projects 



68

//Sends count increment over serial line

bool switchOn = false;

void setup() {

  Serial.begin(9600);

  Serial.println("This is SN105 counts events");

}

void loop() {

  //The next step increments the counter every

  //time switch changes

  if(digitalRead(7) == HIGH and switchOn == false){

     Serial.print("Switch has been turned on for ");

     Serial.print(counter);

     Serial.print(" times.");

     Serial.println("   ");

     counter = counter + 1;

     switchOn = true;

  //Delay ensures switch does not bounce

     delay(500);

 }

  //The next step determines switch state

 if(digitalRead(7) == LOW and switchOn == true){

    switchOn = false;

 }

}

Some example data is captured and shown in Figure 4-11 using the 

serial port and the time stamp activated.

Chapter 4  Simple Science and Engineering Projects 



69

How could this setup be utilized? Assume there are two similar events 

where the counts of occurrences need to be analyzed, for example, the 

number of cars that appear to be traveling over the speed limit on a road. 

In one time slot from 9 to 10 AM, there are 11 cars found speeding, but 

there are only 5 speeding between 7 and 8 PM. This data is collected for the 

rest of the week and is listed in Table 4-2. The street is not in a school zone, 

but it is close to a school. This analysis could help with the comparison of 

how drivers react to the knowledge that they are driving near a school zone 

when a reduction in speed is required.

Figure 4-11.  Screen Capture of Data from Arduino Count of Events

Chapter 4  Simple Science and Engineering Projects 



70

The preceding data indicates a very high standard deviation, so we 

may need more data to see if there is a better correlation or it may just vary 

that high and be somewhat unpredictable.

�Counts Recap
This tool can be used to capture several different types of events. If the 

switch is not the best input device, there are other types of sensors like 

infrared sensors that could be used to track fast events. The data can then 

be analyzed using statistics of event occurrence, and this type of analysis is 

key to many scientific studies.

�Summary
The projects in this chapter provide tools to measure and analyze some key  

scientific parameters. These include air temperature buoyancy which 

is a primary driver in the weather of the world. The next project shows 

how to measure pressure and how area impacts this value given the same 

force. This is key to distributing load and a very important factor in many 

engineering projects. Finally, the last project provides a tool to quickly 

capture event occurrence and can be used to accurately obtain the number 

of events of interest for statistical analysis.

Table 4-2.  Example Capturing Count Data

Cars Speeding
Day of the Week 9–10 AM 7–8 PM

Mon 11 5

Tues 8 3

Wed 5 6

Thrs 12 2

Fri 14 8

Avg 10 4.8

Std Dev 4.85 2.64

Chapter 4  Simple Science and Engineering Projects 



71© Paul Bradt and David Bradt 2020 
P. Bradt and D. Bradt, Science and Engineering Projects Using the Arduino and Raspberry Pi,  
https://doi.org/10.1007/978-1-4842-5811-8_5

CHAPTER 5

Advanced Physics 
and Mathematics 
for Science 
and Engineering
This chapter elaborates on some advanced topics of mathematics and 

how they can be used to model aspects that are time dependent. Included 

in this chapter are descriptions of some basic and more advanced 

mathematical aspects of calculus, heat transfer, velocity, acceleration, and 

integration. Other physical aspects related to mass, friction, inertia, and 

momentum are discussed. This is a lot to cover, and this text scratches 

the surface; however, with these key concepts, the reader will understand 

many factors that dominate our environment.

There are several equations in this chapter that model or simulate 

reality. There is a brief explanation for each, and many will be used in later 

projects in this book to explain and demonstrate how the equation can be 

utilized to model reality.

https://doi.org/10.1007/978-1-4842-5811-8_5#ESM


72

�Basics Terms of Calculus
Calculus is the mathematical method that deals with the relationship of a 

change between two or more variables. Some examples include speed or 

velocity which is the change of distance over the change of time. Calculus 

uses standard symbols to represent these changes, normally a lower case 

d with the variable of interest (change in distance x is written as dx). The 

small letter d is utilized to represent the Greek letter delta or the change in 

a value. The following equations show and expand on relationships of heat 

transfer, velocity, acceleration, and other items.

�How Heat Transfer Works
How does temperature affect heat transfer? One can gain a better 

understanding of heat transfer by looking at temperature as the driving 

force that causes heat (or energy) to move from a hot object or area to a 

cooler object or area. It is analogous to the water system in your house. 

Opening a water faucet introduces a low pressure to the system, and the 

high pressure within the water pipes pushes water out the faucet to the 

ambient low-pressure zone. This represents the tendency of any system 

with varying energy levels to become uniform…to equalize over time. Heat 

energy responds to this tendency toward uniformity through three primary 

transfer methods called conduction, convection, and radiation. The 

equations for heat transfer came from resource [3].

�Conduction Heat Transfer
Conduction heat transfer occurs inside a solid object. Conduction heat 

transfer is heat that moves through an object with almost no movement 

of the object’s particles. Another way to look at conduction heat transfer 

is each particle within the object receives heat from the particle next to 

it and then passes it to the next particle and so on throughout the object. 

Chapter 5  Advanced Physics and Mathematics for Science and Engineering



73

Figure 5-1 illustrates this concept by showing how heat is transferred 

through a rod from the hot end to the cold end.

Figure 5-1.  Conduction Heat Transfer

Different materials transfer heat at different rates. The factor that is 

used to calculate the amount of heat transfer rates in materials is called the 

conduction heat transfer coefficient. Metals tend to have high conduction 

heat transfer coefficients, while insulators and plastics tend to have low 

conduction heat transfer coefficients. See the Appendix for a list of thermal 

conductivity coefficients for various materials. Unless more energy is 

put into the object over time, the temperature will equalize, and the heat 

transfer rate will eventually go to zero. The following equation is the basic 

equation for heat transfer via conduction:

dq/dt = (k dA (Th – Tc))/dx

This equation shows that the temperature difference, the area, and the 

length of the object are driving factors in the amount of heat transferred 

via conduction

where

dq/dt = Heat transfer over time (Joule/sec).

k = Conduction heat transfer coefficient (Joule/sec-

m-Co). This is material dependent.

dA = Area through which heat is transferred (m2).

Chapter 5  Advanced Physics and Mathematics for Science and Engineering



74

Th = Temperature at hot location (Co).

Tc = Temperature at cold location (Co).

dx = Material thickness or length (m).

Several aspects regarding this equation are interesting. First, the 

greater the temperature difference, the more heat that is transferred. 

Second, the heat transfer coefficient (i.e., the material), the area, and the 

material thickness directly affect the amount of heat transferred.

�Convection Heat Transfer
Convection heat transfer is caused by the movement of a fluid or gas 

from one area to another area. This movement of a fluid over a surface is 

the primary difference between conduction and convection. Figure 5-2 

demonstrates convection heat transfer in a fluid or gas.

Figure 5-2.  Convection Heat Transfer

Chapter 5  Advanced Physics and Mathematics for Science and Engineering



75

One example of convection heat transfer is how hot air rises. A good 

demonstration is how a hot-air balloon captures the rising hot air when 

the burner is turned on. When a heat source warms the air around it, that 

air rises (this was demonstrated as buoyancy in the previous chapter). 

This brings in cooler air from around that area, and then the cooler air is 

warmed. The net result is heat is transferred upward because warm air is 

more buoyant because it is less dense. This is called natural convection. 

Natural convection in a fireplace continually feeds oxygen to the fire.

Another form of convection heat transfer is forced convection. In 

this case, a fluid or gas is forced to flow over a surface. The temperature 

difference between the fluid and the surface transfers the heat. Forced 

convection can be used to cool a hot object, for example, when you turn a 

fan on and the air blows across your skin cooling you. Forced convection 

can also be used to heat an object. An example of this is how the heater in 

your car blows warm air into the car to warm the driver and passengers.

The next equation is the basic equation for heat transfer by natural 

convection:

dq/dt = h dA (Th – Tc)

This equation shows that the temperature difference and the area are 

driving factors in the amount of heat transferred via natural convection

where

dq/dt = Heat transfer (Joule/secs).

h = Surface convection heat transfer coefficient (Joule/

sec-m2-Co). The value of this variable can become very 

complex to determine as it is dependent on the gas, the 

conditions on the surface, the temperature, humidity, 

velocity of flow across it, and other items.

dA = Area through which heat is transferred (m2).

Th = Temperature at hot location (Co).

Tc = Temperature at cold location (Co).

Chapter 5  Advanced Physics and Mathematics for Science and Engineering



76

�Radiation Heat Transfer
The term radiation as it is used in heat transfer is different than its normal 

use. It does not necessarily result from a nuclear reaction, but it does 

require a very hot object. The object is so hot that it actually gives off 

energy in the form of light, and the light is the medium that transfers the 

energy. Figure 5-3 demonstrates this concept where the light from the 

sun carries heat through the cold of space all the way to Earth. That light 

warms our planet.

Figure 5-3.  Heat Transfer by Radiation

The factors that impact heat transfer by radiation are temperature and 

the surface of the material absorbing the heat. The next equation describes 

heat transfer by radiation:

dq/dt = ε Ϭ A (T14 – T24 )

This equation shows that the temperature difference is the primary 

factor in radiation heat transfer because they are raised to the fourth power

where

Chapter 5  Advanced Physics and Mathematics for Science and Engineering



77

dq/dt = Heat transfer (Joule/secs).

ε = Emissivity is a factor of the material and 

indicates how much of the energy is emitted due to 

the internal temperature.

Ϭ = Stefan-Boltzmann constant = 5.67 × 10-8 W/m2 – K4.

A = Area through which heat is transferred (m2).

T1 = Temperature at hot location (°K).

T2 = Temperature at cold location (°K).

Using the preceding equation, it can be shown that approximately 1000 

W/m2 reaches the Earth’s surface on a sunny day. Most of the energy of 

light resides in the infrared and visible spectrum.

This amount of energy must be adjusted given the angle at which the 

sunrays hit the Earth’s surface. The following equation can be used to 

calculate the amount of heat reaching the Earth’s surface due to the angle 

Ѳ of the light striking the Earth:

dq/dt = (1000 W/m2) ϵ A cos Ѳ

where Ѳ = the angle of the solar rays as they strike the object.

�All Three Heat Transfer Mechanisms Work 
Together!
In many cases, there may be two or three heat transfer mechanisms 

occurring at the same time. For example, when a pot is put on an electric 

stove and the heating element is on high, all three mechanisms are at work. 

The pot is in direct contact with the stove heating element, so conduction 

is at work. The air around the stove heating element is warmed, so it 

rises around the pot transferring heat via convection. Finally, if the stove 

heating element is on high, it most likely will be glowing red and hot 

Chapter 5  Advanced Physics and Mathematics for Science and Engineering



78

enough to give off heat via radiation. It is straightforward to calculate the 

total heat transferred. Simply add each value for conduction, convection, 

and radiation. However, in many cases, one heat transfer mechanism 

dominates, and the others can be neglected.

The researcher should keep in mind that this summary only scratches 

the surface of the field. One very complex aspect is that heat transfer is 

a time-dependent function, so the math problems can get complicated. 

However, the researcher armed with this basic knowledge of heat transfer 

and how it works will be better prepared to continue the study in advanced 

physics heat transfer and thermodynamics classes.

�Mass
Mass has been described as a measure of the amount of material or stuff 

that resists a force working on it. We sometimes incorrectly think of weight 

as equivalent to mass. Weight is really the force of gravity on a given mass. 

For example, an astronaut may weigh 130 lbs on her home scale, but zero 

when she is in space visiting the International Space Station. Her mass, 

however, is the same at home and on the Space Station. Mass does not 

change based on the forces acting on an object, though weight can change 

based on the acceleration due to gravity.

�Velocity and Acceleration
Sometimes we confuse the terms velocity and acceleration. The difference 

is that velocity is the instantaneous measure of the change in distance 

over a change in time. For example, as we drive our car, our speedometer 

measures our velocity in miles per hour or m/h. Acceleration is the 

change in velocity over a change in time. So, if we step on the gas, velocity 

increases; and the rate at which it increases per some measure of time 

(e.g., second, minute, hour) is acceleration. This shows how they are 

related measurements, but different.

Chapter 5  Advanced Physics and Mathematics for Science and Engineering



79

If x = position or distance, t = time, v = velocity, and 

a = acceleration, then the following equations apply:

v = change in x/change in time

This is written in shorthand as v = dx/dt.

a = change in v/change in time

This is written in shorthand as a = dv/dt.

These equations show how velocity and acceleration are calculated 

and how they are related.

Here on Earth we are under the influence of the gravitational pull 

from the mass of the Earth. This pull is the force of gravity which creates 

a constant rate of acceleration toward the Earth of 32.2 (feet/sec)/sec or 

9.81 (meters/sec)/sec. This is commonly simplified to 32.2 ft/sec2 and 

9.81 m/sec2.

The primary equation that governs force in terms of mass and 

acceleration is

Force = Mass × Acceleration, abbreviated as an 

equation F=ma

In the Metric system, the units of measurement are

Force: Newton = N

Mass: Kilograms = kg

Acceleration: Meters per second2 = m/s2

In the English system, the units of measurement are

Force: Pounds = lbs

Mass: Slugs or pounds mass = lbm

Acceleration: Feet per second2 = ft/s2

Chapter 5  Advanced Physics and Mathematics for Science and Engineering



80

“Force is equal to mass times acceleration” is Newton’s Second Law of 

Motion. This is a key equation which establishes how all objects behave 

and interact. It describes why you stay attached to the Earth; it explains 

the motions of the planets; it even describes how fast a car or a runner can 

accelerate.

Is there a good way to show or communicate how force interacts with 

an object? There is a methodology termed Free Body Diagram which is 

used to graphically show the location, direction, and magnitude of forces 

that are being applied to an object (Figure 5-4). These forces can act on 

an object in different directions. In many cases, a single force is broken 

down into three components x, y, and z. These vectors are used to analyze 

how an object moves in these three axes. This is a branch of study termed 

vector mechanics.

Figure 5-4.  Simple Free Body Diagram of F = M × A

In the preceding case, there is only one force acting on the object, so it 

will accelerate to the right. If there were an equal and opposite force acting 

on the object pulling it to the left, then the sum of all the forces would be 

zero, and it would not move. If the forces do not sum up to zero, then the 

object will move in the direction of the greatest force. This is Newton’s 

Third Law of Motion.

Chapter 5  Advanced Physics and Mathematics for Science and Engineering



81

�Inertia
Inertia is very important; it is stated as once a body is in motion, it stays 

in motion until acted on by an outside force. This is Newton’s First Law of 

Motion.

Isaac Newton’s three Laws of Motion define how many things in the 

world function and have allowed engineers and scientists to understand 

and solve many common problems related to moving objects.

�Momentum
Momentum describes the potential damage when objects collide and is 

defined as the product of mass times velocity. The more momentum an 

object has when it collides with another object, the more damage. So, if a 

car travels 5 mph and hits something, there may not be much damage. If a 

car were traveling 65 mph, momentum increases significantly, and the car 

would certainly cause much greater damage to itself and/or to whatever 

it hit. A truck, which has more mass than a car, traveling at 65 mph would 

cause even more damage.

Momentum = mass x velocity, abbreviated as an equation M=mv

�Friction
What is friction? When two objects are in contact, and a force exerted on 

one object causes motion, the object(s) will encounter a resistive force 

called frictional force. (See Figure 5-5 for a Free Body Diagram showing 

these forces.) Several factors affect the frictional force: the weight of an 

object, its surface roughness, the roughness of the surface it rests on, and 

the force being exerted on it to move it. Other factors that can influence or 

describe these aspects are the frictional coefficient of the surface and the 

angle at which an object is being pulled or pushed.

Chapter 5  Advanced Physics and Mathematics for Science and Engineering



82

Some key definitions of some of the symbols used in the following 

equations are as follows:

FN = The normal force pushing down on the table. 

The term normal is used because a 90-degree 

angle is designated a normal angle. It is always 

perpendicular to the surface an object is sitting on.

FTable = The force of the table pushing or holding the 

object up.

Ffr = This is the frictional force resisting movement 

of an object. It is a function of the surface and the 

normal force.

μs and μk = The static (no movement) and dynamic 

(object in motion) coefficients of friction. They are 

dependent on the material of the surface finish.

If there is no motion, then the sum of the forces will equal zero (see 

Figure 5-5):

•	 Sum of force in Y direction = FN = FTable.

•	 FN= Mass of object × Acceleration due to gravity = mg  

(g is acceleration due to gravity).

•	 Sum of force in X direction = Ffr = F

•	 The static coefficient of friction for materials = μs.

•	 Frictional force that balances the maximum force in X 

direction prior to motion is Ffr = FN x μs.

The static coefficient friction is in effect when the two objects are not in 

motion. It is higher than the dynamic coefficient. This is easily seen when 

a heavy object starts moving, as it takes less force to keep it moving than it 

took to start the motion.

Chapter 5  Advanced Physics and Mathematics for Science and Engineering



83

If there is motion (see Figure 5-5)

•	 Sum of force in Y direction = FN = FTable = mg.

•	 Sum of force in X direction = Ffr < F.

•	 The kinetic coefficient of friction for materials = μk.

•	 Frictional force that resists the force in X direction 

causing motion is

Ffr = FN x µk

Figure 5-5.  Free Body Diagram Showing Frictional Force

If Ffr is greater than or equal to F, the object will not move. When a car 

is stopped at a light and is not moving, this is the condition. In the winter, 

when the roads are icy, the Ffr is significantly less. If this car is on a slope,  

Ffr may not be greater than the force F pulling the car down the slope. In 

this case, the car might start moving, and things get exciting!

The equations for friction may seem complex at first, but keep in mind 

the Free Body Diagram and how the forces are if there is no motion.

�More Advanced Aspects of Calculus
In calculus, there is a mathematical concept which is designated integration. 

Putting it simply, data is integrated over a variable like time to arrive at a total 

measurement. It uses the symbol ∫. In the case of an object in motion, the 

researcher is interested in the change of distance over time and the change 

of velocity over time. These are interrelated using the following equations.

Chapter 5  Advanced Physics and Mathematics for Science and Engineering



84

The standard calculus method of writing integration is

x2 – x1 = ∫ v(t) dt

where X2 is the final position and X1 is the initial position from t1 to t2. The 

shorthand way of writing it is velocity (v) = dx/dt. This was described at the 

start of this chapter.

Likewise, for acceleration, the standard calculus method of writing is

v2 – v1 = ∫ a(t) dt

This shows the change in velocity (or the integration of velocity from t1 

to t2). As can be seen, this is another way of writing acceleration: a = dv/dt.

One important aspect of the relationship between velocity and 

acceleration is how acceleration captures and sums up the change 

in velocity over time. Often an object’s velocity is not constant, so an 

instantaneous velocity does not provide the complete picture of the 

object’s motion. Acceleration over time is needed to describe its motion.

The importance of both integration and the opposite function of taking 

the derivative allows the scientist or engineer to solve equations for terms 

of interest and simulate or model the real world.

�Summary
This chapter covers a lot of complex concepts at a very high level; however, 

if something does not make sense, the reader should look over the 

associated project in this book and other sources online or in other books 

to gain a better understanding of the complex yet highly useful subjects. A 

majority of the world behaves based on these simple equations.

Chapter 5  Advanced Physics and Mathematics for Science and Engineering



85© Paul Bradt and David Bradt 2020 
P. Bradt and D. Bradt, Science and Engineering Projects Using the Arduino and Raspberry Pi,  
https://doi.org/10.1007/978-1-4842-5811-8_6

CHAPTER 6

Time/Condition-
Dependent Projects
This chapter provides details on several projects that are time dependent 

and condition dependent. What does that mean? For each project, there 

are two variables measured. In most of these projects, one variable is time. 

The second variable is the value of interest that the researcher is trying to 

determine and how it changes over time. This is a key concept in science 

and engineering because it happens very often and sometimes is very hard 

to measure. This chapter highlights several very interesting sensors that 

bring us closer to the Star Trek tricorder.

The first two projects demonstrate conduction heat transfer. The third 

project demonstrates convection heat transfer. The fourth project is an 

example of simulating zero gravity. The fifth measures friction and examines 

the difference between a slope and a flat surface. The sixth and final project 

demonstrates a very nice sensor that can measure acceleration.

These very unique experiments allow the reader to expand their 

knowledge base in many areas. Additionally, the reader can explore the 

concepts associated with time-dependent measurement.

�Conduction Heat Transfer Through 
an Aluminum Rod
While we often measure temperature, heat transfer is really an important 

aspect. Heat transfer is the flow of heat from a hot object to a cold object. 

https://doi.org/10.1007/978-1-4842-5811-8_6#ESM


86

In this project, we will show a way to measure the heat flowing down 

an aluminum rod into a cold source. Additionally, from a mathematics 

perspective, we will show a method to model or simulate the movement of 

heat through an object.

Science  Develop an understanding of conduction heat transfer.

Technology/Engineering  Using the Arduino and three sensors to 
measure the flow of heat.

Mathematics  Using real temperature measurements to compare to 
a simulation of the heat transfer using a parabolic partial differential 
equation.

This first project demonstrates how heat is transferred along an 

aluminum rod.

The parts needed are

•	 Arduino Uno 3

•	 3 MCP9700 temperature sensors (see how to add a wire 

harness in the “Appendix” section)

•	 Miscellaneous wires and terminal strips

•	 A bucket of ice water

•	 A mixture of ice and water is very close to zero 

degree C and will maintain that temperature over 

an extended time period.

•	 3/8-inch-diameter, 16-inch-long aluminum rod

•	 12 inches of the rod will be above the ice water, and 

4 inches will extend into the ice water.

Chapter 6  Time/Condition-Dependent Projects



87

•	 Pipe insulation (wrap around the pipe)

•	 Rod support board

•	 1/2-inch foam insulation board

Connect the three temperature sensors per Figures 6-1 and 6-2.

Attach temperature sensors to the aluminum rod using tape at the 

following positions: 3 inches above the ice bath, 6 inches above the ice 

bath, and at the end of the rod 12 inches above the ice bath. It is important 

to tape the sensors so they make good contact with the aluminum rod. One 

way to ensure this is to file a small flat space on the rod and then tape the 

sensor there to maximize contact.

Figure 6-1.  Conduction Heat Transfer Experiment and Sensor Assembly

Chapter 6  Time/Condition-Dependent Projects



88

The code in Listing 6-1 is slightly modified from the code used in 

the Arduino data logging project. There are two sensors added, and one 

is adjusted so that it reads the same as the other two sensors. Since it is 

slightly modified, for our designation, the letter B is added to the code 

name to show it is similar but slightly different.

Figure 6-2.  Conduction Experiment Schematic

Chapter 6  Time/Condition-Dependent Projects



89

Listing 6-1.  Arduino SN102B Three MCP9700 Temperature Sensors 

Code

//SN102B

//Modified from SN102 with addition three sensors and

//calibration of factor to one sensor

//Original code modified by Paul Bradt from

//Arduino Projects to Save the World

//Published by Apress

int ADC0, ADC1, ADC2;

int MCPoffset = 500;

void setup(){

  Serial.begin(9600);

}

void loop() {

  getADC();

  float temp0 = calcTemp(ADC0, MCPoffset);

  float temp1 = calcTemp(ADC1, MCPoffset)-2;

  float temp2 = calcTemp(ADC2, MCPoffset);

  Serial.print(temp0,0);

  Serial.print(" ");

  Serial.print(temp1,0);

  Serial.print(" ");

  Serial.print(temp2,0);

  Serial.print(" ");

  Serial.println(" ");

  delay(5000);

}

Chapter 6  Time/Condition-Dependent Projects



90

void getADC() {

  ADC0 = analogRead(A0);

  ADC1 = analogRead(A1);

  ADC2 = analogRead(A2);

}

   float calcTemp (int val,int offset) {

  return((val*4.8828)-offset)/10;

}

�Ensure Consistency in Temperature Sensor 
Readings
Before inserting the rod in the ice bath, check the temperature of the three 

sensors taped to the aluminum rod. If a variance in temperature readings 

is shown between sensors, a simple sensor calibration will be required. 

Select the temperature level of one of the sensors that we will call the 

“base” sensor. Add or subtract the temperature difference (also called 

the “offset”) between the base sensor and each of the other sensors such 

that all three sensors will read the same temperature. The offset readings 

are then added or subtracted in the appropriate code as shown in the 

following to complete the calibration process.

Note in the preceding Arduino code that 2 degrees C is subtracted from 

the Sensor 1 reading. In the initial comparison between each temperature 

sensor before the rod was put in the ice bath, Sensor 2 showed a rod 

temperature offset of 2 degrees higher than the base temperature sensor. 

Making this change ensures that the temperature sensors are reading 

consistently and are set for accurate comparisons later in the experiment. 

Follow the same process if the third sensor has an offset with the base 

temperature sensor. Determine which sensor is the base temperature 

sensor by comparing the readings to a digital or mercury thermometer.

Chapter 6  Time/Condition-Dependent Projects



91

Then use that sensor as the base sensor and adjust the other sensors to 

match it, as demonstrated in the following line of code:

float temp1 = calcTemp(ADC1, MCPoffset)-2;

Table 6-1 shows some example data gathered for this experiment.

Table 6-1.  Conduction Experiment Data

Position and Temp (Degree C)
Time (min) 3 Inch 6 Inch 12 Inch

0 25 25 25

2 19 24 25

4 19 23 24

6 17 22 23

8 16 21 21

10 15 20 21

12 14 19 20

14 14 19 20

16 14 19 20

18 14 19 19

20 14 18 19

The experiment was run for 20 minutes and is shown in Table 6-1. It 

is then graphed along with an estimate of the temperature to gain insight. 

The graph easily shows how temperature changes over time.

For a deeper exploration of this subject, the experimenter can compare 

the measured results to predictions using the parabolic partial differential 

equation (PDE). This sounds a lot harder than it is. It is a method that uses 

previous and surrounding temperatures to predict how a temperature 

Chapter 6  Time/Condition-Dependent Projects



92

will change over time at specific points. If the reader is interested, see the 

following information as it uses a simple spreadsheet set up with a PDE 

that simulates temperature change of the rod as heat is transferred to the 

ice bath over time.

The equation is from an older textbook source [5] and is added below. 

It is helpful to understand how each cell interacts from this equation for 

developing the parabolic partial differential equation in a spreadsheet 

model.

Ti+1,j=Ti,j+K*(Ti,j+1-2*Ti,j+Ti,j-1)

where

T = Temperature

i = Time increment

j = Distance increment

K = Factor that includes thermal conductivity, 

specific heat, density, time increment, and distance 

increment

Table 6-2 and Figure 6-3 show a spreadsheet and a graph that 

demonstrates the PDE methodology. In the Excel spreadsheet, time 

progresses with each row. Each column represents a point on the rod, and 

the method for calculating a value for a particular cell in this column is to 

use the cell above to the left, the cell above to the right and the cell directly 

above to calculate the temperature in the cell being updated (see the 

preceding equation). To make the spreadsheet work, the boundary cells 

will need to be set to a number and not a formula. For example, the values 

at time zero are estimated and are just number values and not calculated.

These values may need to be adjusted to ensure the model makes 

sense and fits the data reasonably well. The K factor is dependent on 

several factors. The best way to determine this factor is by testing and 

checking the value and running the spreadsheet and updating the K value, 

Chapter 6  Time/Condition-Dependent Projects



93

eventually coming up with the best K that predicts the best match to actual 

test data points.

When using Excel, one very helpful aid to understand where values go 

and come from in each cell is to use the Precedents and Dependents tools 

which are located in the Formulas tab. When you click one of these, arrows 

show up indicating either the precedent or the dependent cell. Table 6-2 is 

a screen capture from the spreadsheet that contains the simulation.

Table 6-2.  Parabolic Partial Differential Calculations for Conduction

Figure 6-3 shows the points which are graphed along with a few points 

from the actual data measured. It can be seen that the actual measured 

data is very close to the curves from the prediction. Tools like this PDE 

methodology can be used to determine values when real data cannot be 

obtained.

Chapter 6  Time/Condition-Dependent Projects



94

�Aluminum Rod Conduction Heat Transfer Recap
This project along with the spreadsheet simulation example shows how heat 

spreads along an object over time. The conduction heat transfer method is 

utilized extensively in modern computers which have finned heat sinks that 

pull heat away from the processor chips and keep them cool.

�Conduction Heat Transfer Through 
a Window
This project shows another example of conduction heat transfer. Rather 

than a long object, the heat flows through a very thin object, a window.

Figure 6-3.  Graph of Partial Differential Equation and Actual Results

Chapter 6  Time/Condition-Dependent Projects



95

Science  Further develop understanding of conduction heat transfer.

Technology/Engineering  Using the Arduino, two sensors, Real-
Time Clock Module, and an SD card data logging shield.

Mathematics  Calculation of heat transfer through a window using 
a small area to estimate it.

This project uses an LM35 sensor in a sealed TO package. This sealed 

package along with sealing the small PC board in shrink tubing will help 

to protect and maintain the effectiveness of this sensor outdoors. This is 

shown in the Raspberry Pi air buoyancy project in Chapter 4.

The parts needed are

•	 Arduino Uno (for this project, we must use the Uno to 

mount the data logging shield to it)

•	 2 LM35 temperature sensors and assembled wire 

harnesses (see section “Raspberry Pi Buoyancy of Air 

Version” in Chapter 4)

•	 SparkFun SD card data logging shield product

•	 SD card

•	 SparkFun Real-Time Clock Module

•	 Tape to attach sensors to the window

•	 Window with access to running wires outside

Connect the hardware per Figures 6-4 and 6-5.

Chapter 6  Time/Condition-Dependent Projects



96

Figure 6-4.  Window Conduction Project

Chapter 6  Time/Condition-Dependent Projects



97

The code for this project (Listing 6-2) is a combination of two codes for 

two different SparkFun products. The first product is the Real-Time Clock 

Module. Once it is set, then it will keep time. This part of the code will need 

Figure 6-5.  Window Conduction Experiment Schematic

Chapter 6  Time/Condition-Dependent Projects



98

to be run and then afterward will need to be commented out so that it does 

not reset it each time the code is run. The second product is the SD shield; 

it plugs into a standard Arduino Uno. The following code sends the data 

over the serial port and also sends to the SD card by either creating a file 

and then adding the data or just adding data to the existing file.

Note T he code that is bold below is on one line and should not 
overwrap when typed into the IDE.

Listing 6-2.  Arduino SN106 Combination of RTC and SD Card 

Shield Code

//Listing 6_2

//SN106_RTC_SD_temp_11_23_19

//Code modified by Paul Bradt

//Original elements of code from Sparkfun

#include <Wire.h>

#include <RTClib.h>

#include <SD.h>

#include <SparkFunDS1307RTC.h>

#define DS1307_ADDRESS 0x68

#define SQW_INPUT_PIN 2

#define SQW_OUTPUT_PIN 13

// The analog pins that connect to the sensors

#define tempPin1 0 // analog 0

#define tempPin2 1 // analog 1

const int chipSelect = 8;

float temperature1C = 0.0;

Chapter 6  Time/Condition-Dependent Projects



99

float temperature2C = 0.0;

String currentDate = "";

RTC_DS1307 RTC;

void setup() {

  Wire.begin();

  Serial.begin(9600);

  Serial.println("SN106 SD and RTC Nov 2019 PDB");

  pinMode(SQW_INPUT_PIN, INPUT_PULLUP);

  pinMode(SQW_OUTPUT_PIN, OUTPUT);

  digitalWrite(SQW_OUTPUT_PIN,

  digitalRead(SQW_INPUT_PIN));

  rtc.begin();

  rtc.writeSQW(SQW_SQUARE_1);

  //This is where time is set:

  //foramt of rtc.setTime(s, m, h, day, date,

  //month, year)where :

  //day = day of the week;date = day of the month

  //The line below will need to be uncommented to

  //set time (put current time in):

  //rtc.setTime(00, 51, 16, 6, 29, 11, 19);

  //After time set then comment it again so does not

  //reset time again.

  Serial.print("Initializing SD card...");

  pinMode(chipSelect, OUTPUT);

  if (!SD.begin(chipSelect)) {

    Serial.println("Card failed, or not present");

    //Exit from program here.

Chapter 6  Time/Condition-Dependent Projects



100

    return;

  }

  Serial.println("card intialized.");

}

void loop() {

  String updatedDate = printDate();

  File dataFile = SD.open("datalog.txt", FILE_WRITE);

  if (dataFile) {

    dataFile.print(updatedDate);

    Serial.print("Date is: ");

    Serial.print(updatedDate);

    delay(10);

    int tempReading1 = analogRead(tempPin1);

    int tempReading2 = analogRead(tempPin2);

    // converting that reading to temperature C

    temperature1C = (tempReading1 * 4.8828) / 10;

    temperature2C = ((tempReading2 * 4.8828) / 10);

    //write analog sensor data to SD card

    dataFile.print(" Temperature 1");

    dataFile.print(" = ");

    dataFile.print(temperature1C);

    dataFile.print(" Temperature 2");

    dataFile.print(" = ");

    dataFile.print(temperature2C);

    Serial.print(" Temperature 1");

    Serial.print(" = ");

Chapter 6  Time/Condition-Dependent Projects



101

    Serial.print(temperature1C);

    Serial.print(" Temperature 2");

    Serial.print(" = ");

    Serial.print(temperature2C);

    dataFile.println();

    //create a new row to read data more clearly

    dataFile.close();//close file

    Serial.println();//print to the serial port too:

  }

  else

  {

    Serial.println("error opening datalog.txt");

  }

  delay(5000);

}

String printDate() {

  char tempDate[50];

  rtc.update();

  Wire.beginTransmission(DS1307_ADDRESS);

  byte zero = 0x00;

  Wire.write(zero);

  Wire.endTransmission();

  Wire.requestFrom(DS1307_ADDRESS, 7);

  DateTime currentTime = RTC.now();

  //Print the date like 3/1/1/11 23:59:59

  sprintf(tempDate, "%02d/%02d/%02d %02d:%02d:%02d",

  currentTime.month(), currentTime.day(),

Chapter 6  Time/Condition-Dependent Projects



102

  currentTime.year(), currentTime.hour(),

  currentTime.minute(), currentTime.second());

  return String(tempDate);

}

When this data was collected and listed in Table 6-3, the temperature 

outside was cold. The outside and inside temperatures were very low and 

not significantly different. The data was taken at 5-minute increments for 

15 minutes and then averaged as shown in Table 6-3.

Table 6-3.  Window Conduction Experiment Data

Time of Reading
(Minutes)

Temperature Inside (oC) Temperature Outside (oC)

0 12.98 7.65

5 12.00 7.16

10 11.51 7.16

15 11.51 7.16

Average temperature 12.00 7.28

Analysis of heat transfer:

Use the conduction equation dq = (k dA (Th-Tc))/dx

where

dq = Heat transfer (Joule/sec)

k = Window conduction heat transfer coefficient = 

0.84 Joule/sec-m-Co

dA = Area of window through which heat is 

transferred = 0.81 × 1.12 = 0.91 m2

Chapter 6  Time/Condition-Dependent Projects



103

Th = Temperature at hot location = 12 oC

Tc = Temperature at cold location = 7.3 oC

dx = Window thickness = 3.2 x 10-3 m

dq = ((0.84) * (0.91 ) * (12 – 7.3))/ 3.2 x 10-3 = 1123 

Joule/sec

Since 1 Joule/sec = 1 watt, the heat transfer rate through the window is 

around 1100 watts escaping the house on a cold winter day.

�Window Conduction Heat Transfer Recap
This project demonstrates an interesting aspect regarding heat transfer 

that a high differential temperature on a cold day really drives the high 

heat transfer rate. It could also be utilized to determine how much heat is 

driven through a window into a house on a hot day. One more item that 

can be seen from the equation is that as the temperature changes, the heat 

transfer rate changes. To get the complete picture and gather data over the 

day, this setup does not need a computer connected to it. The Arduino will 

track changes through the day.

�Convection Heat Transfer
Convection heat transfer is a somewhat more complex method of heat 

transfer as it depends on the movement of a gas or fluid passing over 

a surface. This project utilizes a similar setup to the aluminum rod 

conduction project, but air is blown across it, and the temperatures at two 

points on the rod are observed to gather data related to the heat transfer 

rate and how fast the fan blows.

Chapter 6  Time/Condition-Dependent Projects



104

Science  Develop an understanding of convection heat transfer.

Technology/Engineering  Using the Arduino and two sensors.

Mathematics  Using the temperature conversion and averaging two 
measurements to calculate the convection heat transfer.

The parts needed are

•	 Arduino Uno 3

•	 2 MCP9700 temperature sensors (assembled with wire 

harness)

•	 Miscellaneous wires and terminal strips

•	 A bucket of ice water

•	 A mixture of ice and water is very close to zero 

degree C and will maintain that temperature over 

an extended time period.

•	 3/8-inch-diameter, 16-inch-long aluminum rod

•	 12 inches of the rod will be above the ice water, and 

4 inches will extend into the ice water.

•	 Rod support board

•	 1/2-inch foam insulation board

Build up the system per Figures 6-6 and 6-7.

Chapter 6  Time/Condition-Dependent Projects



105

Figure 6-6.  Convection Experiment

Chapter 6  Time/Condition-Dependent Projects



106

The code in Listing 6-3 is basically the same as that used in the first 

conduction project with the exception of only two sensors, not three.

Figure 6-7.  Convection Experiment Schematic

Chapter 6  Time/Condition-Dependent Projects



107

Listing 6-3.  Arduino SN102B Two MCP9700 Temperature Sensors 

Code

//SN102B

//Modified from SN102 with addition two sensors and

//calibration of factor to one sensor

//Original code modified from Arduino Projects to

//Save the World

//Published by Apress

int ADC0, ADC1;

int MCPoffset = 500;

void setup(){

  Serial.begin(9600);

}

void loop() {

  getADC();

  float temp0 = calcTemp(ADC0, MCPoffset);

  float temp1 = calcTemp(ADC1, MCPoffset)-2;

  Serial.print(temp0,0);

  Serial.print(" ");

  Serial.print(temp1,0);

  Serial.print(" ");

  Serial.println(" ");

  delay(10000);

}

void getADC() {

  ADC0 = analogRead(A0);

  ADC1 = analogRead(A1);

}

Chapter 6  Time/Condition-Dependent Projects



108

float calcTemp (int val,int offset) {

  return((val*4.8828)-offset)/10;

}

The data collected using this system is shown in Table 6-4.

Table 6-4.  Data from the Convection Experiment

Fan 
Speed

2 Inches 4 Inches Average 
Temperature

Ambient 
Temperature

Delta in 
Temperature

Off 18 20 19 24 5

Low 20 21 20.5 24 3.5

High 20 22 21 24 3

Convection Heat Transfer Recap
The preceding data shows how a higher flow rate of air across the rod 

increases the heat transfer and causes the temperature to become more 

uniform. This experiment demonstrates convection heat transfer; and we 

use it often, for example, when we try to cool off a hot spoon of soup by 

blowing on it before we eat it.

�Zero Gravity Demonstration
What precisely is zero gravity? When we stand on the Earth, its gravitational 

force pulls us down, and we stay in contact with the ground. To achieve 

zero gravity, the forces must either balance out, or the object must be far 

enough away that the force of attraction between the two objects is very low. 

Figure 6-8 and the following equation show how the gravitational attraction 

works on an object in motion upward from the Earth.

Chapter 6  Time/Condition-Dependent Projects



109

F = (G x M x m)/r2

where

F = Force of gravity between the objects. Unit is N.

G = Gravitational constant and in SI units = 

6.674×10−11 N·m2·kg−2.

M = Larger mass units are Kg.

m = Smaller mass units are Kg.

r = Distance between the centers of the objects in meters.

As can be seen from the equation, a very massive object, like the 

Earth, dominates the force of attraction between the two objects. Also 

if the objects are close, then the force of attraction will be significantly 

higher. For example, the reader could calculate the gravitational force on 

them at the surface of the Earth and then compare that to the force at the 

International Space Station which is approximately 400 kilometers above 

the Earth’s surface. Don’t forget to include the actual distance from the 

center of the Earth in the calculations!

Figure 6-8.  Zero Gravity Free Body Diagram

Chapter 6  Time/Condition-Dependent Projects



110

The system in this project monitors the change of the force exerted on 

an object as it flies up and then falls down. This is a unique project because 

it will demonstrate a way to simulate zero gravity here on Earth.

Science  Develop an understanding of how the acceleration due to 
gravity and force work.

Technology/Engineering  Using the Arduino and the force sensor 
to measure simulated zero gravity.

Mathematics  Using the direct measurement from the force sensor 
to develop a graph showing the force of gravity while an object goes 
from rest to the top of its trajectory where forces are balanced by the 
upward thrust resulting in zero force on the sensor. Also using curve 
smoothing in Excel.

The parts needed are

•	 Arduino Uno 3

•	 Round force sensor

•	 10K Ω resistor

•	 Miscellaneous wires, proto-board, and terminal strips

The parts needed to change a compression sensor into a tension 

sensor (see Figures 6-9 to 6-12) are

•	 2 U-bolts and 6 nuts

•	 1 square piece of wood with four holes matching the 

U-bolts

•	 Flat metal plate with two holes which match the U-bolts

•	 Adhesive rubber bumper attached to the flat plate 

which pushes on the sensor

Chapter 6  Time/Condition-Dependent Projects



111

Assemble the system that converts the force sensor to a tension sensor as 

shown in Figures 6-9 through 6-12. This configuration is similar to a device 

called a tension load cell. With the sensor hanging from the top U-bolt, when 

force is applied to the bottom U-bolt, the sensor senses that force.

How does this device work? The upper U-bolt provides a means of 

holding the sensor up. The lower U-bolt pulls down on the plate with 

its own weight. This force is transmitted to the force sensor because the 

rubber bumper is resting on it. Four nuts are only on the upper U-bolt 

and clamp it to the board. The other two nuts are on the lower U-bolt and 

ensure it will not slip through the flat metal plate.

(The sensor is attached to the wood with double-sided tape.)

Figure 6-9.  Components for Tension Sensor

Chapter 6  Time/Condition-Dependent Projects



112

Figure 6-10.  Tension Sensor Partially Assembled with upper U-Bolt

Figure 6-11.  Fully Assembled Tension Sensor with lower U-Bolt and 
Plate Which Pushes on It

Chapter 6  Time/Condition-Dependent Projects



113

Build the test support structure (see Figures 6-12 through 6-14). This 

setup consists of a base, an upright support that supports the drawer slide, 

and a block attached to one of the tabs that was connected to the drawer. 

This block has a hook on it, and the tension sensor hangs from this hook. 

The drawer slide ensures the force sensor assembly travels up and down 

on a controlled path. This can be seen in Figure 6-14. The weight of the 

lower U-bolt will push down on the force sensor as it goes up. Then as the 

force sensor travels down, the lower U-bolt will lift off the force sensor, and 

at the top there will be no force simulating zero gravity.

Connect the sensor and resistor to the Arduino.

Set up the slide-up and test that it moves freely and records data.

Chapter 6  Time/Condition-Dependent Projects



114

Figure 6-12.  Zero Gravity Project Setup and Schematic

Chapter 6  Time/Condition-Dependent Projects



115

The same code (Listing 4-3 or 4-4) used in the previous force/pressure 

project (Code SN104 or SN104B) is used for this project. For this experiment, 

the scientist will need to modify either code by speeding up the data 

collection. To do this in the SN104 code, uncomment the delay (100) line 

and comment the delay (5000) line. Uncommenting the code implements 

the shorter delay time. Commenting the code by adding // in front of the 

line causes the Arduino to ignore that line of code.

Figure 6-13.  Zero Gravity Sensor at the Bottom

Chapter 6  Time/Condition-Dependent Projects



116

There are some variables (Exerted force upward, friction in the drawer 

slide, and others) that may require several attempts to get good data on 

this experiment. The Arduino is trying to capture data in a very short time, 

and it is difficult to get consistency when launching the sensor assembly 

using the drawer slide to guide its trajectory straight up into the air. The 

experimenter should try several attempts and use the best results they 

obtain. The data is collected (an example set collected is listed in Table 6-5) 

and then graphed as shown in Figure 6-15.

Figure 6-14.  Zero Gravity Sensor Being Tossed Up in the Air

Table 6-5.  Example Data from the Zero Gravity Force Experiment

Force 296 479 195 0 0 0 0 40 359 225 159

Msec 0 100 200 300 400 500 600 700 800 900 1000

Chapter 6  Time/Condition-Dependent Projects



117

Figure 6-15.  Raw Force Data Graph

Figure 6-16.  Force Data Graph with Smoothing

The preceding graph is a reverse graph with the higher force 

measurement at the bottom. The points are connected, but in reality it 

would not be disjointed or flat as this seems to indicate.

Figure 6-16 is the same data but smoothed out using Excel tools.

Chapter 6  Time/Condition-Dependent Projects



118

The preceding curve is a reverse graph with the zero force at the top 

and higher force at the bottom part of the graph. Using the tools in Excel, 

the researcher can add a trend line curve. In this case, the curve shown is a 

fourth-order polynomial and seems to accurately describe the force as you 

toss the sensor up in the air. The initial reaction is more force at the start. 

Then as it rises up in the air, the force drops off and goes to zero at the top 

of its motion. Then it increases as it comes down until it hits the bottom 

and then goes back to the standing amount. This simulates zero gravity.

�Zero Gravity Recap
This project demonstrates what happens in the zero gravity aircraft that 

NASA and other organizations use to simulate this environment. As the 

aircraft goes up over the top of its flight path, there are a few moments 

where the upward force on the object balances the downward pull gravity. 

For this brief time, it simulates zero gravity.

�Measuring Frictional Force Projects
Friction is a big part of the world and governs how our cars drive down the 

road and how we walk on slippery surfaces. Friction and sometimes the lack 

of friction are evident when trying to drive a car on ice. This project uses the 

sensor from the previous project and attaches it to a special setup that enables 

testing the frictional force as an object moves over several different materials.

Science  Develop an understanding of frictional forces.

Technology/Engineering  Using the Arduino and the force sensor 
to measure frictional force differences on different materials. Also 
evaluating the difference related to frictional force on angled slopes.

Mathematics  Vector analysis of forces of an object being pulled up 
an incline.

Chapter 6  Time/Condition-Dependent Projects



119

�Arduino Frictional Force Project
The parts needed are

•	 Arduino Uno 3

•	 Round force sensor

•	 10K ohm resistor

•	 Tension sensor from the previous project

•	 Miscellaneous boards, pulleys, fasteners to set up slope 

friction test rig

This project uses the force sensor and a device that converts it from 

a compression-measuring device into a tension-measuring device, and 

the instructions on how to build it are shown in the previous zero gravity 

project.

Adafruit has a very good description of how this sensor works along 

with a calibration curve showing where it is linear and where it is not. The 

“Appendix” section at the back of this book shows the technique needed 

to solder the wires to the round force sensor. When it is connected to the 

Arduino, the resistor is part of a voltage divider and is compared to the 

normal resistor.

The slope test apparatus for this experiment consists of two main 

sections which are attached together as shown in Figures 6-17 and 6-18. 

The first section consists of the base of the apparatus and the piece that 

has the test surfaces attached to it. The test surface section is attached 

to the base with a hinge to allow it to pivot to different angles. To set 

the angles of this inclined plane from 15 degrees and 30 degrees, two 

more small pieces of support wood were cut at those angles. These were 

attached with angle brackets to the base piece and with a screw to the test 

surface piece (inclined plane). A pulley was attached to the test section 

piece to direct the string up to the tension sensor. The second section is the 

Chapter 6  Time/Condition-Dependent Projects



120

upright support, and it holds the tension sensor above the slope and keeps 

it high enough for the steepest test angle. The last part needed is the test 

block that is pulled along the test surface and is a wood block, but another 

material could be substituted.

For this experiment, there were three test surfaces utilized. The first 

was a thin piece of styrene plastic (which can be found at a hobby shop or 

online). The second was the plain test surface which was wood. The final 

test surface was fine-grade sandpaper. Even fine-grade sandpaper caused 

the block to catch and jerk loose. Rough-grade sandpaper might make it 

difficult to gather good data.

Figure 6-17.  Frictional Force Experiment

Chapter 6  Time/Condition-Dependent Projects



121

�Operational Schematic
The same code (Listing 4-3 or 4-4) used in the previous force/pressure 

project (Code SN104 or SN104B) is used for this project.

Figure 6-18.  Frictional Force Setup and Schematic

Chapter 6  Time/Condition-Dependent Projects



122

The data shown in Figure 6-19 is an average of a few readings. The 

increasing force makes sense due to the increased slope, but is this increase 

caused by more friction or because the object is being lifted as it goes up 

the slope? Let’s analyze it using a Free Body Diagram in Figure 6-20.

Figure 6-19.  Graph of Friction Based on Material and Slope

Chapter 6  Time/Condition-Dependent Projects



123

Friction equation: FFr = FN × μs

Also, of note, the sensor is actually seeing twice the force that is exerted 

on the block of wood. (See Figure 6-21.)

Figure 6-20.  Free Body Diagram Showing Forces on the Object Being 
Pulled Up the Slope

Figure 6-21.  Free Body Diagram Showing Forces on the Sensor

Chapter 6  Time/Condition-Dependent Projects



124

Analyzing the data in greater detail along with the inclined Free Body 

diagram shows that the increasing force is actually a factor of lifting the 

object higher up the slope rather than an increase in friction.

�Arduino Frictional Force Recap
This setup allows a good comparison between materials and surfaces. 

Perhaps another experiment could compare a material and/or surface 

configuration that really resists movement. Or try to find a material 

that resists more in one direction but not as much in the opposite 

or perpendicular direction (such as wood with a significant grain or 

roughness). Another potential area to test would be wet or dry surfaces. 

Another possible area for investigation is the friction on ice.

�Raspberry Pi Frictional Force Project
This project provides another way to measure friction force and then track 

the data on the Raspberry Pi. The authors also analyzed the nonlinear 

force sensor response curve in greater detail using some tools in Excel.

Science  Develop an understanding of frictional forces.

Technology/Engineering  Using the Raspberry Pi, analog to digital 
converter, and the force sensor to measure frictional force differences 
on different materials.

Mathematics  Use an Excel spreadsheet trend line to graph data 
and use the equations to interpolate intermediate values.

The parts needed are

•	 Raspberry Pi 3

Chapter 6  Time/Condition-Dependent Projects



125

•	 MCM 40-pin GPIO breakout board and cable for 

Raspberry Pi (or equivalent)

•	 Small round force sensor

•	 MCP3008 analog to digital converter

•	 Miscellaneous wires, proto-board, and terminal strips

•	 10K Ω resistor

This project uses the same friction measure system and supporting 

device from the previous project; see Figures 6-22 and 6-23. It has a 

stand and the device that changes the force sensor from a compression-

measuring device into a tension-measuring device. This tension sensor 

device construction is shown in the zero gravity project (Figures 6-9, 6-10, 

and 6-11), and it was also used in the Arduino friction project.

Figure 6-22.  Raspberry Pi Friction Experiment

Chapter 6  Time/Condition-Dependent Projects



126

Figure 6-23.  Raspberry Pi Friction Schematic

Chapter 6  Time/Condition-Dependent Projects



127

The code for this project (Listing 6-4) is similar to the buoyancy code 

(Listing 4-2) but only uses one sensor input. It also converts the reading to 

percentage of full scale. This allows the reader to take this percentage and 

calculate a reading based on the graph developed in the analysis section of 

this topic.

Note T he following four lines of Bold code below are on one line in 
the program.

Listing 6-4.  Raspberry Pi Code PI_SN002B One Analog Force Sensor

# Pi_SN002B is a Modification by Paul Bradt

# Simple example of reading the MCP3008 analog input # channels

# Convert to Force

# Original code from Author: Tony DiCola

# License: Public Domain

import time

# Import SPI library (for hardware SPI) and MCP3008 library.

import Adafruit_GPIO.SPI as SPI

import Adafruit_MCP3008

# Software SPI configuration:

CLK   = 23

CS     = 24

MISO = 21

MOSI = 19

mcp = Adafruit_MCP3008.MCP3008(clk=CLK, cs=CS, miso=MISO, mosi=MOSI)

Chapter 6  Time/Condition-Dependent Projects

https://doi.org/10.1007/978-1-4842-5811-8_4#PC2


128

# Hardware SPI configuration:

# SPI_PORT   = 0

# SPI_DEVICE = 0

# mcp = Adafruit_MCP3008.MCP3008(spi=SPI.SpiDev(SPI_PORT, SPI_DEVICE))

print('Reading MCP3008 digital values from Force Sensor')

# Main program loop.

while True:

    # Read all the ADC channel values in a list.

    values = [0]*8

    for i in range(8):

   # �The read_adc function will get the value for two channels (0-1).

        values[i] = mcp.read_adc(i)

    �#Math for converting raw digital value to percentage full 

scale of sensor

    values[1] = values[0]/1023.0*100.0

    print('| {0:>4} Raw| {1:>4} %| '.format(*values))

    # Pause for half a second.

    time.sleep(0.5)

The following Adafruit web site below has a lot of good information 

regarding this force sensor. The graph on this site seems to show that 

response (resistance to force) looks linear, but it is in reality a log–log graph. 

The standard linear interpolation calculation will not work as this is a 

nonlinear relationship. However, the graph and analysis later in the chapter 

can be utilized. With a measured resistance and the analysis, a better 

estimate of the force is the result.

www.adafruit.com/product/166

Chapter 6  Time/Condition-Dependent Projects

http://www.adafruit.com/product/166


129

The graph in Figure 6-24 utilizes spreadsheet tools and the information 

regarding the force sensor to create trend line equations in Excel to 

develop a way to estimate the force given a resistance reading across the 

sensor. The authors created this graph by putting in two endpoints where 

the force sensor responded in linear fashion on a log–log scale per the 

Adafruit site. These points are 16 grams at 10 ohms and 1000 grams at 

1.5 ohms. This is a negative sloped relationship. Per the force sensor data 

sheet, it is a power–law relationship. To simulate this, the authors using 

Excel compared a linear trend line, log trend line, and power trend line 

and then used the trend line equations to calculate endpoints and an 

intermediate force value at 6 ohms. The power trend line really shows a 

very nonlinear response. The force value changes significantly given a very 

small resistance change, in particular, at the high force range. This type of 

calculation can be used to fine-tune the sensor or refine the prediction of 

force value based on the change in resistance.

Chapter 6  Time/Condition-Dependent Projects



130

Figure 6-24.  Graph of Force Sensor Data and Calculations

Chapter 6  Time/Condition-Dependent Projects



131

�Raspberry Pi Frictional Force Recap
This project expands on the frictional force experiment by using a Raspberry 

Pi and ADC along with a spreadsheet to develop a nonlinear equation to 

estimate values quickly when reading the percentage of full scale.

�Acceleration Projects
As described in Chapter 5, the acceleration of an object is an important 

concept. In this section, the first project measures the acceleration of a 

baseball bat. The second project measures the acceleration of a car or 

objects inside and can provide very useful data. An example use of this 

type of project is when automobile companies crash their cars and use test 

dummies to see how devices like airbags protect humans from the rapid 

deceleration and hitting objects.

�Acceleration Direct to Computer
This project uses an amazing sensor, the ADXL345 sensor, that captures 

the acceleration in the x, y, and z axes. This project uses it to measure the 

acceleration of a bat as it is swung. Remember safety first when swinging a 

bat. Make sure no one is in the area.

Science M easure the acceleration of an object as it speeds up and 
slows down.

Technology/Engineering  Using the Arduino and a very unique 
sensor that measures the acceleration in the x, y, and z axes.

Mathematics  Vector analysis of the acceleration of an object.

Chapter 6  Time/Condition-Dependent Projects



132

The parts needed are

•	 Arduino Uno

•	 Computer

•	 ADXL 345 acceleration sensor (SparkFun)

•	 Baseball bat

•	 Extra-long USB extension cable

•	 Miscellaneous hardware (wire, prototype board, wood, 

and zip ties)

The setup is put together as shown in Figures 6-25 and 6-26.

Figure 6-25.  Swinging a Bat Acceleration Project

Chapter 6  Time/Condition-Dependent Projects



133

The code in Listing 6-5 is modified slightly from the SparkFun web site. 

The SPI library will need to be obtained to get it to operate.

Note T he code that is bold below is on one line and should not 
overwrap when typed into the IDE.

Figure 6-26.  Swinging a Bat Project Schematic

Chapter 6  Time/Condition-Dependent Projects



134

Listing 6-5.  Arduino SN107_ADXL345 Acceleration Sensor to Computer

//SN107

//This code captures the data and sends it over the

//serial port to the computer

//Add the SPI library so we can communicate with the

//ADXL345 sensor

//Code from Sparkfun website

#include <SPI.h>

//Assign the Chip Select signal to pin 10.

int CS=10;

//This is a list of some of the registers available

//on the ADXL345.

//To learn more about these and the rest of the

//registers on the ADXL345, read the datasheet!

char POWER_CTL = 0x2D;   //Power Control Register

char DATA_FORMAT = 0x31;

char DATAX0 = 0x32;      //X-Axis Data 0

char DATAX1 = 0x33;      //X-Axis Data 1

char DATAY0 = 0x34;      //Y-Axis Data 0

char DATAY1 = 0x35;      //Y-Axis Data 1

char DATAZ0 = 0x36;      //Z-Axis Data 0

char DATAZ1 = 0x37;      //Z-Axis Data 1

//This buffer will hold values read from the ADXL345

//registers.

char values[10];

//These variables will be used to hold the x,y and z axis 

accelerometer values.

int x,y,z;

Chapter 6  Time/Condition-Dependent Projects



135

void setup(){

  //Initiate an SPI communication instance.

  SPI.begin();

  //Configure the SPI connection for the ADXL345.

  SPI.setDataMode(SPI_MODE3);

  //Create a serial connection to display the data on

  //the terminal.

  Serial.begin(9600);

  //Set up the Chip Select pin to be an output from

  //the Arduino.

  pinMode(CS, OUTPUT);

  //Before communication starts, the Chip Select pin

  //needs to be set high.

  digitalWrite(CS, HIGH);

  //Put the ADXL345 into +/- 4G range by writing the

  //value 0x01 to the DATA_FORMAT register.

  writeRegister(DATA_FORMAT, 0x01);

  //Put the ADXL345 into Measurement Mode by writing

  //0x08 to the POWER_CTL register.

  writeRegister(POWER_CTL, 0x08);

  //Measurement mode

}

void loop(){

  //Reading 6 bytes of data starting at register

  //DATAX0 will retrieve the x,y and z acceleration

  //values from the ADXL345.

  //The results of the read operation will get stored

  //to the values[] buffer.

  readRegister(DATAX0, 6, values);

Chapter 6  Time/Condition-Dependent Projects



136

  //The ADXL345 gives 10-bit acceleration values, but

  //they are stored as bytes (8-bits). To get the

  //full value, two bytes must be combined for each

  //axis.

  //The X value is stored in values[0] and values[1].

  x = ((int)values[1]<<8)|(int)values[0];

  //The Y value is stored in values[2] and values[3].

  y = ((int)values[3]<<8)|(int)values[2];

  //The Z value is stored in values[4] and values[5].

  z = ((int)values[5]<<8)|(int)values[4];

  //Print the results to the terminal.

  Serial.print(x, DEC);

  Serial.print(',');

  Serial.print(y, DEC);

  Serial.print(',');

  Serial.println(z, DEC);

  delay(500);

}

//This function will write a value to a register on

//the ADXL345 Parameters:

//char registerAddress - The register to write a

//value to

//char value - The value to be written to the

//specified register.

void writeRegister(char registerAddress, char value){

  //Set Chip Select pin low to signal the beginning

  //of an SPI packet.

  digitalWrite(CS, LOW);

  //Transfer the register address over SPI.

  SPI.transfer(registerAddress);

Chapter 6  Time/Condition-Dependent Projects



137

  //Transfer the desired register value over SPI.

    SPI.transfer(value);

  //Set the Chip Select pin high to signal the end of

  //an SPI packet.

  digitalWrite(CS, HIGH);

}

//This function will read a certain number of

//registers starting from a specified address and

//store their values in a buffer.

//Parameters:

//  �char registerAddress - The register address to

//start the read sequence from.

//  int numBytes - The number of registers that

//should be read.

//  �char * values - A pointer to a buffer where the

//results of the operation should be stored.

void readRegister(char registerAddress, int numBytes, char * values){

  //Since we're performing a read operation, the most

  //significant bit of the register address should

  //be set.

  char address = 0x80 | registerAddress;

  //If we're doing a multi-byte read, bit 6 needs to

  //be set as well.

  if(numBytes > 1)address = address | 0x40;

  //Set the Chip select pin low to start an SPI

  //packet.

  digitalWrite(CS, LOW);

  //Transfer the starting register address that needs

Chapter 6  Time/Condition-Dependent Projects



138

  //to be read.

  SPI.transfer(address);

  //Continue to read registers until we've read the

  //number specified, storing the results to the

  // input buffer.

  for(int i=0; i<numBytes; i++){

    values[i] = SPI.transfer(0x00);

  }

  //Set the Chips Select pin high to end the SPI

  //packet.

  digitalWrite(CS, HIGH);

}

Copy and paste the data into a spreadsheet. Several tests were needed, 

before consistent data was obtained. An example is shown in Table 6-6.

The data from the sensor was converted to g level based on the range 

of the sensor. The conversion factor from the SparkFun web site is 0.0078. 

The total g level was calculated by combining the acceleration of all three 

components mathematically using the Pythagorean Theorem as expanded 

to three dimensions. Pythagoras determined that for a right triangle, the 

hypotenuse is the square root of the square of the x and y legs of the triangle.

The total vector for acceleration A = (x2 + y2 + z2)0.5 or the square root of 

the sum of the squares.

This data was then captured on the graph in Figure 6-27.

Table 6-6.  Data from the Acceleration of Bat Experiment

Data pt 1 2 3 4 5 6 7 8

Msec 0 100 200 300 400 500 600 700

G Level 0.28 1.15 3.20 4.00 4.11 4.08 1.09 0.28

Chapter 6  Time/Condition-Dependent Projects



139

�Acceleration with Computer Recap
The data in Figure 6-27 shows how the acceleration ramps up, quickly 

peaks, and then drops off fast as the batter reaches the end of the swing. 

The trend line applied is a second-order polynomial and reflects a 

smoother transition of the acceleration change.

�Acceleration Measurement Without a Computer
This project uses the ADXL345 sensor connected to an Arduino with an 

LCD and a battery supply to measure the acceleration of a car. Remember 

safety first. Make sure the driver is focused on driving and the passenger 

is reading the acceleration. Also the reader might want to use an empty 

parking lot to ensure there are no other vehicles around during the test.

Science T his project utilizes the accelerometer sensor to develop 
a system to gain insight into how fast an object speeds up and then 
can slow down.

Figure 6-27.  Smoothed Graph of Bat Swing Acceleration

Chapter 6  Time/Condition-Dependent Projects



140

Technology/Engineering  Using the Arduino, LCD, battery power, 
and a very unique sensor that measures acceleration.

Mathematics  Vector analysis of the acceleration of an object.

The parts needed are

•	 Arduino Uno 3 (in this case, the authors used a clone Arduino)

•	 ADXL345 acceleration sensor (SparkFun)

•	 16 × 2 LCD (SparkFun)

•	 Battery case

•	 Miscellaneous wires, cables, proto-board, and screws 

and double-sided tape to hold the battery case

This project integrates the Arduino, LCD, battery pack, and AXDL 345 

acceleration sensor in a nice package to use in a car as it speeds up and 

slows down. See Figures 6-28 and 6-29.

Figure 6-28.  Acceleration Project with LCD

Chapter 6  Time/Condition-Dependent Projects



141

Figure 6-29.  Acceleration Project with LCD Schematic

The following code (Listing 6-6) is modified from two sets of code on 

the SparkFun web site. One piece of code is for the accelerometer, and the 

second code is for the LCD. It captures the acceleration and sends it over 

the serial port to the Arduino which displays it on the LCD.

This project needs to have the SPI.h and SoftwareSerial.h libraries loaded.

Chapter 6  Time/Condition-Dependent Projects



142

Note T he code that is bold below is on one line and should not 
overwrap when typed into the IDE.

Listing 6-6.  Arduino SN107A_ADXL345 Acceleration Sensor to LCD

//SN107A

//Modified Code by Paul Bradt

//Original LCD and SD Card code from Sparkfun

#include <SPI.h>

#include <SoftwareSerial.h>

SoftwareSerial mySerial(3,2);

//Assign the Chip Select signal to pin 10.

int CS=10;

//This is a list of some of the registers available

//on the ADXL345.

//To learn more about these and the rest of the

//registers on the ADXL345, read the datasheet!

char POWER_CTL = 0x2D;      

//Power Control Register

char DATA_FORMAT = 0x31;

char DATAX0 = 0x32;         //X-Axis Data 0

char DATAX1 = 0x33;         //X-Axis Data 1

char DATAY0 = 0x34;         //Y-Axis Data 0

char DATAY1 = 0x35;         //Y-Axis Data 1

char DATAZ0 = 0x36;         //Z-Axis Data 0

char DATAZ1 = 0x37;         //Z-Axis Data 1

//This buffer will hold values read from the ADXL345

//registers.

char values[10];

Chapter 6  Time/Condition-Dependent Projects



143

//�These variables will be used to hold the x,y and z

//axis accelerometer values.

int x,y,z;

void setup(){

  //Initiate an SPI communication instance.

  SPI.begin();

  //Configure the SPI connection for the ADXL345.

  SPI.setDataMode(SPI_MODE3);

  //Create a serial connection to display the data on

  //the terminal.

  Serial.begin(9600);

  mySerial.begin(9600);

  //Set up the Chip Select pin to be an output from

  //the Arduino.

  pinMode(CS, OUTPUT);

  //Before communication starts, the Chip Select pin

  //needs to be set high.

  digitalWrite(CS, HIGH);

  //Put the ADXL345 into +/- 4G range by writing the

  //value 0x01 to the DATA_FORMAT register.

  writeRegister(DATA_FORMAT, 0x01);

  //Put the ADXL345 into Measurement Mode by writing

  //0x08 to the POWER_CTL register.

  writeRegister(POWER_CTL, 0x08);

  //Measurement mode

}

Chapter 6  Time/Condition-Dependent Projects



144

void loop(){

  //Reading 6 bytes of data starting at register

  //DATAX0 will retrieve the x,y

  //and z acceleration values from the ADXL345.

  //The results of the read operation will get stored

  //to the values[] buffer.

  readRegister(DATAX0, 6, values);

  //The ADXL345 gives 10-bit acceleration values, but

  //they are stored as bytes

  //(8-bits). To get the full value, two bytes must

  //be combined for each axis.

  //The X value is stored in values[0] and values[1].

  x = ((int)values[1]<<8)|(int)values[0];

  //The Y value is stored in values[2] and values[3].

  y = ((int)values[3]<<8)|(int)values[2];

  //The Z value is stored in values[4] and values[5].

  z = ((int)values[5]<<8)|(int)values[4];

  //Print the results to the terminal.

  Serial.print(x, DEC);

  Serial.print(',');

  Serial.print(y, DEC);

  Serial.print(',');

  Serial.println(z, DEC);

  //Clear the Sparkfun screen LCD first

  mySerial.write(254);

  //move cursor to beginning of first line

  mySerial.write(128);

  mySerial.write("                ");

Chapter 6  Time/Condition-Dependent Projects



145

  // clear display

  mySerial.write("                ");

  mySerial.write(254);

  mySerial.write(128);

  //Print to Sparkfun LCD screen here

  mySerial.print("X: ");

  mySerial.print(x);

  mySerial.print(" Y:");

  mySerial.print(y);

  //Move cursor to second row on LCD

  mySerial.write(254);

  mySerial.write(192);

  mySerial.print("Z: ");

  mySerial.print(z);

  delay(500);

}

//This function will write a value to a register on

// the ADXL345.

//Parameters:

//  char registerAddress - The register to write a

//value to

//  char value - The value to be written to the

// specified register.

void writeRegister(char registerAddress, char value){

  //Set Chip Select pin low to signal the beginning

  //of an SPI packet.

  digitalWrite(CS, LOW);

Chapter 6  Time/Condition-Dependent Projects



146

  //Transfer the register address over SPI.

  SPI.transfer(registerAddress);

  //Transfer the desired register value over SPI.

    SPI.transfer(value);

  //Set the Chip Select pin high to signal the end of

  //an SPI packet.

  digitalWrite(CS, HIGH);

}

//This function will read a certain number of

//registers starting from a specified

//address and store their values in a buffer.

//Parameters:

//  char registerAddress - The register address to

// start the read sequence from.

//  int numBytes - The number of registers that

//should be read.

//  char * values - A pointer to a buffer where the

// results of the operation should

//be stored.

void readRegister(char registerAddress, int numBytes, char * values){

  //Since we're performing a read operation, the most

  //significant bit of the register address should be

  //set.

  char address = 0x80 | registerAddress;

  //If we're doing a multi-byte read, bit 6 needs to

  //be set as well.

  if(numBytes > 1)address = address | 0x40;

Chapter 6  Time/Condition-Dependent Projects



147

  //Set the Chip select pin low to start an SPI

  //packet.

  digitalWrite(CS, LOW);

  //Transfer the starting register address that needs

  //to be read.

  SPI.transfer(address);

  //Continue to read registers until we've read the

  //number specified, storing

  //the results to the input buffer.

  for(int i=0; i<numBytes; i++){

    values[i] = SPI.transfer(0x00);

  }

  //Set the Chips Select pin high to end the SPI

  //packet.

  digitalWrite(CS, HIGH);

}

A few experiments were run and some data gathered as shown in 

Table 6-7.

Table 6-7.  Data from the Automobile Acceleration Experiment

Msec 0 100 200 300 400

G Level 0.6318 0.7956 0.9633 0.3588 0.6669

The data from the sensor was converted to g level based on the range 

of the sensor and the conversion factor from the SparkFun web site, which 

is 0.0078 × value of the reading from the sensor. This data is displayed on a 

graph in Figure 6-30.

Chapter 6  Time/Condition-Dependent Projects



148

�Acceleration Without Computer Recap
Figure 6-30 shows how acceleration ramps up quickly and then drops off 

even faster as the car starts slowing down. Why do you think this is? This 

is because the driver had to apply the brakes, and this along with road 

friction slows the car down faster than it accelerates.

�Summary
This chapter provides a wide variety of projects that demonstrate various 

science and engineering aspects. The first set of projects show how heat is 

transferred inside an object or when air moves over an object. There is a 

project that shows how to simulate zero gravity along with a system to compare 

changes in frictional force of different materials. Finally, the last two projects 

allow the reader to measure the acceleration of a baseball bat or a car. All of 

these projects demonstrate aspects where one measurement is dependent on 

another variable. The Arduino, the Raspberry Pi, and these amazing sensors are 

excellent devices to capture this information just like the Star Trek tricorder.

Figure 6-30.  Graph of Car Acceleration and Deceleration

Chapter 6  Time/Condition-Dependent Projects



149© Paul Bradt and David Bradt 2020 
P. Bradt and D. Bradt, Science and Engineering Projects Using the Arduino and Raspberry Pi,  
https://doi.org/10.1007/978-1-4842-5811-8_7

CHAPTER 7

Light and Imaging 
Projects
The objective of this chapter is to gain insight into how light provides 

us with heat and when reflected off the moon or other celestial objects 

provides beautiful images. With regard to the latter, this chapter teaches 

novice astronomers how to develop a modern, automated imaging system 

for a telescope through two projects.

The first project demonstrates how to use an Arduino with a unique 

light sensor to gain an understanding of radiation heat transfer. The 

second project uses a Raspberry Pi and its camera to capture unique 

images to study the moon and several planets.

These concepts associated with light and imaging will provide 

inspiration and guidance for novice astronomers and heat transfer 

engineers, who would like to improve their ability to measure energy in 

light or capture images of the moon, planets, and other celestial points of 

interest.

�Radiation Heat Transfer
Most of the heat comes to our planet from the sun via light and the 

radiation method of heat transfer. On a cold morning, it feels very nice 

to stand in the sunlight. There is a lot of heat energy in sunlight, and it is 

https://doi.org/10.1007/978-1-4842-5811-8_7#ESM


150

mostly transmitted via the visible and infrared wavelengths of light. This 

project uses a very unique sensor along with the Arduino to measure both 

infrared and visible light.

Science  Develop an understanding of light and radiation heat 
transfer.

Technology/Engineering  Using the Arduino and a unique light 
sensor to capture light intensity.

Mathematics  Conversion of radiation data to Lux in the code and 
estimation of radiation heat transfer directly from the sun or through 
a window with a reflective coating.

This project utilizes a very unique new sensor from Adafruit, the TSL 

2591. It uses two photodiodes to measure various wavelengths of light. One 

photodiode is sensitive to infrared only, and the other is sensitive to visible 

light, infrared, and the full spectrum of light. This incredibly low-cost 

device then compares and integrates those measurements to calculate Lux 

(which is defined as lumens/square meter) and outputs values for visible 

and infrared light.

The purpose of this experiment is to estimate how much heat via 

radiation from the sun is transferred into a house through a window.

The parts needed are

•	 Arduino Uno

•	 Adafruit light sensor, TSL 2591 luminosity sensor

•	 Window

•	 Optional: Reflective window covering material

•	 Miscellaneous wires and proto-board

Chapter 7  Light and Imaging Projects



151

Figures 7-1 and 7-2 show the system set up in front of a window for 

the purpose of measuring the radiation heat transfer with and without the 

window closed.

Figure 7-1.  Open Window

Figure 7-2.  Closed Window

Chapter 7  Light and Imaging Projects



152

Figure 7-3 shows the schematic and connections of the TSL 2591 light 

sensor to the Arduino.

Figure 7-3.  Light Sensor Schematic

Chapter 7  Light and Imaging Projects



153

Listing 7-1 has only very slight modifications to fit in this book. It is also 

configured to accept bright light. The new TSL 2591 sensor and this code 

work very well. It is a very amazing device to measure light in all kinds of 

conditions.

The Adafruit_Sensor.h and Adafruit_TSL2591.h libraries are needed for 

this code.

Note T he code that is bold below is on one line and should not 
overwrap when typed into the IDE.

Listing 7-1.  Arduino SN108_TSL2591 Light Sensor Code

//SN108 minor modifications by Paul Bradt to

//Original code on Adafruit site

// TSL2591 Digital Light Sensor

// Dynamic Range: 600M:1

// Maximum Lux: 88K

#include <Wire.h>

#include <Adafruit_Sensor.h>

#include "Adafruit_TSL2591.h"

// Example for demonstrating the TSL2591 library –

// public domain!

// connect SCL to I2C Clock

// connect SDA to I2C Data

// connect Vin to 3.3-5V DC

// connect GROUND to common ground

Adafruit_TSL2591 tsl = Adafruit_TSL2591(2591);

// pass in a number for the sensor identifier (for

// your use later)

Chapter 7  Light and Imaging Projects



154

/*********************************************/

//Displays some basic information on this sensor

//from the unified sensor API sensor_t type (see

//Adafruit_Sensor for more information)

/*********************************************/

void displaySensorDetails(void)

  {

  sensor_t sensor;

  tsl.getSensor(&sensor);

  Serial.println(F("------------------------"));

  Serial.print  (F("Sensor:       "));

  Serial.println(sensor.name);

  Serial.print  (F("Driver Ver:   "));

  Serial.println(sensor.version);

  Serial.print  (F("Unique ID:    "));

  Serial.println(sensor.sensor_id);

  Serial.print  (F("Max Value:    "));

  Serial.print(sensor.max_value);

  Serial.println(F(" lux"));

  Serial.print  (F("Min Value:    "));

  Serial.print(sensor.min_value);

  Serial.println(F(" lux"));

  Serial.print  (F("Resolution:   "));

  Serial.print(sensor.resolution, 4);

  Serial.println(F(" lux"));

  Serial.println(F("------------------------"));

  Serial.println(F(""));

  delay(500);

}

Chapter 7  Light and Imaging Projects



155

/*********************************************/

//Configures the gain and integration time for the

//TSL2591

/*********************************************/

void configureSensor(void)

{

  // You can change the gain on the fly, to adapt to

  //brighter/dimmer light situations

  tsl.setGain(TSL2591_GAIN_LOW);//1x gain

  //(Use line above for bright light)

  //tsl.setGain(TSL2591_GAIN_MED);      // 25x gain

  //tsl.setGain(TSL2591_GAIN_HIGH);   // 428x gain

  // Changing the integration time gives you a longer

  //time over which to sense light

  // longer timelines are slower, but are good in

  // very low light situations!

  tsl.setTiming(TSL2591_INTEGRATIONTIME_100MS);

  // Use line above for bright light

  // shortest integration time (bright light)

  // tsl.setTiming(TSL2591_INTEGRATIONTIME_200MS);

  // tsl.setTiming(TSL2591_INTEGRATIONTIME_300MS);

  // tsl.setTiming(TSL2591_INTEGRATIONTIME_400MS);

  // tsl.setTiming(TSL2591_INTEGRATIONTIME_500MS);

  // tsl.setTiming(TSL2591_INTEGRATIONTIME_600MS);

  // longest integration time (dim light)

  //Display the gain and integration time for

  //reference sake

  Serial.println(F("---------------------------"));

  Serial.print  (F("Gain:         "));

  tsl2591Gain_t gain = tsl.getGain();

Chapter 7  Light and Imaging Projects



156

  switch(gain)

  {

    case TSL2591_GAIN_LOW:

      Serial.println(F("1x (Low)"));

      break;

    case TSL2591_GAIN_MED:

      Serial.println(F("25x (Medium)"));

      break;

    case TSL2591_GAIN_HIGH:

      Serial.println(F("428x (High)"));

      break;

    case TSL2591_GAIN_MAX:

      Serial.println(F("9876x (Max)"));

      break;

  }

  Serial.print  (F("Timing:       "));

  Serial.print((tsl.getTiming() + 1) * 100, DEC);

  Serial.println(F(" ms"));

  Serial.println(F("----------------------------"));

  Serial.println(F(""));

}

/**********************************************/

/*

    Program entry point for the Arduino sketch

*/

/**********************************************/

void setup(void)

{

  Serial.begin(9600);

  Serial.println(F("Starting TSL2591 Test!"));

Chapter 7  Light and Imaging Projects



157

  if (tsl.begin())

  {

    Serial.println(F("Found a TSL2591 sensor"));

  }

  else

  {

    Serial.println(F("No sensor found ?"));

    while (1);

  }

  /* Display some basic information on this sensor */

  displaySensorDetails();

  /* Configure the sensor */

  configureSensor();

  // Now we're ready to get readings ... move on to

  //loop()!

}

/****************************************************/

//Shows how to perform a basic read on visible,

//full spectrum or infrared light (returns raw 16-

//bit ADC values)

/****************************************************/

void simpleRead(void)

{

  // Simple data read example. Just read the

  //infrared, fullspecrtrum diode

  // or 'visible' (difference between the two)

  //channels.

  // This can take 100-600 milliseconds! Uncomment

  //whichever of the following you want to read

  uint16_t x = tsl.getLuminosity(TSL2591_VISIBLE);

Chapter 7  Light and Imaging Projects



158

  //uint16_t x =

  //tsl.getLuminosity(TSL2591_FULLSPECTRUM);

  //uint16_t x = tsl.getLuminosity(TSL2591_INFRARED);

  Serial.print(F("[ ")); Serial.print(millis());

  Serial.print(F(" ms ] "));

  Serial.print(F("Luminosity: "));

  Serial.println(x, DEC);

}

/************************************************/

//Show how to read IR and Full Spectrum at once

//and convert to lux

/*************************************************/

void advancedRead(void)

{

  // More advanced data read example. Read 32 bits

  // with top 16 bits IR, bottom 16 bits full

  // spectrum.  That way you can do whatever math and

  //comparisons you want!

  uint32_t lum = tsl.getFullLuminosity();

  uint16_t ir, full;

  ir = lum >> 16;

  full = lum & 0xFFFF;

  Serial.print(F("[ ")); Serial.print(millis());

  Serial.print(F(" ms ] "));

  Serial.print(F("IR: ")); Serial.print(ir);

  Serial.print(F("  "));

  Serial.print(F("Full: ")); Serial.print(full);

  Serial.print(F("  "));

  Serial.print(F("Visible: "));

  Serial.print(full - ir);

Chapter 7  Light and Imaging Projects



159

  Serial.print(F("  "));

  Serial.print(F("Lux: "));

  Serial.println(tsl.calculateLux(full, ir), 6);

}

/***************************************************/

//Performs a read using the Adafruit Unified

//Sensor API.

/***************************************************/

void unifiedSensorAPIRead(void)

{

  /* Get a new sensor event */

  sensors_event_t event;

  tsl.getEvent(&event);

  //Display the results (light is measured in lux)

  Serial.print(F("[ "));

  Serial.print(event.timestamp);

  Serial.print(F(" ms ] "));

  if ((event.light == 0) |

      (event.light > 4294966000.0) |

      (event.light <-4294966000.0))

  {

    // If event.light = 0 lux the sensor is probably

    // saturated and no reliable data could be

    // generated!

    // if event.light is +/- 4294967040 there was a

    // float over/underflow

    Serial.println(F("Invalid adjust gain_timing"));

  }

  else

Chapter 7  Light and Imaging Projects



160

  {

    Serial.print(event.light);

    Serial.println(F(" lux"));

  }

}

/******************************************/

/******************************************/

void loop(void)

{

  //simpleRead();

  advancedRead();

  // unifiedSensorAPIRead();

  delay(500);

}

Table 7-1 shows the data captured on a sunny day. The raw visible and 

infrared light was captured with the window open, and then the data was 

observed when the window was closed. The window had a reflective film 

on it to reduce the light coming through it.

Table 7-1.  Example Radiation Heat Transfer Data

Configuration Avg IR Avg 
Visible

Sum of IR + 
Visible

Improvement  
with Covering

Raw sunlight 1991 2772 4763

Window w/ reflective 

covering

503 927 1430 70% reduction

Chapter 7  Light and Imaging Projects



161

�Analysis of Heat Transfer
The authors then used the preceding data to develop an analysis of the 

heat transferred through a window. This can be used to do design trades 

of the number and size of windows. Another study could look at which 

direction a building or home faces and how many windows are located on 

the south-facing walls.

Start with the equation of the solar radiation hitting the Earth:

dq/dt = (1000 W/m2) ϵ A cos Ѳ

For this experiment, the 1000 W/m2 value will be adjusted based on the 

visible and infrared readings taken from the sensor:

dq/dt = (Window Reduction Factor) (1000 W/m2) ϵ A cos Ѳ

where

Window Reduction Factor = (1 -0.7) = 0.3 from 

observations

ϵ = 0.96 for a white-painted surface

A = 1 m2 using a square meter which can easily be 

scaled up or down for larger or smaller areas

Assume a 30-degree incidence of light hitting the window.

Calculate the heat transfer for the window with reflective coating with 

reduction factor:

dq/dt = (0.30) (1000) (0.96) (1) cos 30 = 249 watts for one m2

Calculate the heat transfer for the raw sunlight with no reduction factor:

dq/dt = (1000) (0.96) (1) cos 30 = 831 watts for one m2

Chapter 7  Light and Imaging Projects



162

Taking this analysis one step further for a large house with six windows 

that are 2 m2, the heat transfer rate would be, at this time of day with this 

angle of incidence, 6 × 2 × 831 watts, or approximately 10,000 watts. That is 

a lot of heat entering through those windows.

Adding the reflective coating reduces that to 3000 watts which is a lot 

less but still quite a bit of energy.

Engineers can use analysis like this to ensure the air-conditioning 

system is sized properly and provides adequate cooling on hot days.

Radiation Heat Transfer Recap
The preceding data shows how beneficial from a heat transfer perspective 

using windows with reflective coatings can be to reduce the amount 

of solar radiation (heat) that enters a window. It can also be utilized to 

estimate the amount of heat contribution and develop changes to the 

number and size of windows when designing a building or house.

�Astrophotography with the Raspberry Pi 
Camera
This project shows another way to use sunlight as it is reflected off other 

planets which can be captured here on Earth using telescopes. This 

project also demonstrates an innovative concept and a great example of 

dedicating a low-cost Raspberry Pi to a permanent task by converting it 

into a modern astrophotographic machine. Figure 7-4 is one of the first 

images the authors captured with the Raspberry Pi 3 telescope system, and 

it just made them want to capture more examples.

Chapter 7  Light and Imaging Projects



163

This final project shows how to attach the Raspberry Pi to some older 

telescopes to convert them to nice modern imaging machines. The first 

subsection shows how a Raspberry Pi camera system can be added to 

a Meade ETX-60AT telescope. This is a very nice little scope that has a 

controller and a drive system that will keep it tracking the object despite 

the Earth’s rotation. The second subsection attaches the same Raspberry Pi 

camera system to a standard 4 ½-inch reflector telescope.

Science  Develop an understanding of astronomy, the moon,  
and planets.

Technology/Engineering  Using the Raspberry Pi and its camera 
along with telescopes to gather images of astronomical items. Planning 
and building a complex system. Learning how to use a 3D printer.

Mathematics  Develop an understanding of how mathematics is 
used to ensure multiple assemblies fit together.

STEM T his section is a great example of the difference between 
engineering and science. The majority of this section covers the 
engineering needed to develop this unique combination of modern 

Figure 7-4.  Image the Authors Captured of the Moon with Raspberry 
Pi and Telescope

Chapter 7  Light and Imaging Projects



164

Raspberry Pi technology with two different older telescopes. These 
devices are then used by the scientist to explore astronomy, gather 
data, and capture beautiful images of the moon and the two largest 
planets.

The first subsections describe how to do the setup of the Meade 

ETX-60AT telescope and the 4 ½-inch reflector telescope. They also 

highlight the code that operates the cameras to take both still images 

and videos. The later subsections show how to build the components for 

these complex but very useful devices. In the “Appendix” section, there is 

information regarding the Meade ETX-60AT telescope. This telescope is 

no longer available from the manufacturer, but the reader may be able to 

obtain one on eBay or some other similar telescope.

Note T he section “Astrophotography with the Raspberry Pi Camera” 
is presented in reverse order; it may be confusing at first, but the 
reason for this is to help the reader understand the final goal first 
and then explain how the authors reached that goal. The objective of 
this project is to set up an astrophotography telescope system that is 
adaptable to different telescopes and easy to use.

The following is a list of the subsections, and the reader may want to 

jump around them based on their interest:

7.2.1: Assembling the Meade ETX-60AT and 

Raspberry Pi

7.2.2: Assembling the 4 ½-Inch Reflector Telescope 

and the Raspberry Pi

7.2.3: Basic Raspistill Previewing an Image with the 

Terminal Command Line

Chapter 7  Light and Imaging Projects



165

7.2.4: Astrophotography Raspberry Pi Python GUI

7.2.5: Assembling the Raspberry Pi and Touchscreen 

in the Case

7.2.6: Camera Modifications, Camera Case, and 

Power Cables

7.2.7: Building the Shelf for the Meade ETX-60AT

7.2.8: Helpful Hints Using the Telescope and 

Raspberry Pi

7.2.9: Example Images and Enhancing Them Using a 

Video Capture GUI

�Assembling the Meade ETX-60AT 
and Raspberry Pi
The individual pieces (telescope, Raspberry Pi/touchscreen/case, and 

the shelf) have their own sections later that describe them. The following 

diagrams in this section show how the major pieces are assembled.

The authors tried to modularize the system so that it can quickly 

be assembled or disassembled. One unique feature of this design is 

the Raspberry Pi 3 system can be removed with one screw and set up 

as its own work station to review and select the pictures remotely from 

the telescope. Note that in the top view in Figure 7-5, the telescope and 

support yokes are not shown.

Chapter 7  Light and Imaging Projects



166

Figure 7-6 shows the assembled system with identification labels for 

the components.

Figure 7-5.  Top View of the Shelf and Raspberry Pi

Figure 7-6.  Assembled Raspberry Pi, Shelf, and Telescope

Chapter 7  Light and Imaging Projects



167

After all key components are built, the astronomer should follow these 

seven steps to assemble the system:

	 1.	 Insert AA batteries into the telescope (Figure 7-7) in 

accordance with the telescope instructions. Because 

of their location, under the shelf, the batteries need 

to be inserted first.

Figure 7-7.  Battery Installation in Meade Telescope

	 2.	 Attach the Raspberry Pi 3 and case to the shelf 

(Figure 7-8).

Chapter 7  Light and Imaging Projects



168

	 3.	 Slide the shelf through the telescope yoke (Figure 7-9).

	 4.	 Place the movable clamp against the front of the 

yoke and screw in the eye bolt through the movable 

clamp into the RIVNUT angle bracket (Figure 7-9).

	 5.	 Tighten the eye bolt until the clamp secures the 

shelf in place.

Figure 7-8.  Attaching Raspberry Pi to Shelf

Figure 7-9.  Tightening the Clamp with the Eye Bolt

	 6.	 Insert the Raspberry Pi 3 camera case into the 

telescope eyepiece (Figure 7-10).

Chapter 7  Light and Imaging Projects



169

	 7.	 Follow the Meade telescope setup instructions 

to enable star tracking. Now it is ready to start 

capturing beautiful images!

�Astrophotography Meade ETX-60AT Setup Recap
The small size of the Meade ETX-60AT with the Raspberry Pi attached to it 

is perfect for an amateur astronomer as it can be left set up. It has a small 

footprint, takes a small space, and is ready to go at a moment’s notice!

�Assembling the 4 1/2-Inch Reflector 
Telescope and the Raspberry Pi
This section shows the same Raspberry Pi system mounted to a different 

telescope using a body mount method. It uses a system that mounts the 

Raspberry Pi 3 using a 5-inch hose clamp and a few pieces of ½ × 3/16-

inch wood to the body of the telescope tube. The Raspberry Pi 3 and 

touchscreen were too heavy to body mount to the Meade ETX-60AT as the 

motors were not strong enough to move it. However, it works very well on 

this non-powered old reflector telescope.

Figure 7-10.  Insert Pi Camera Case into Eyepiece

Chapter 7  Light and Imaging Projects



170

The following images show the greater magnification a more powerful 

telescope provides compared to the images of the moon from the smaller 

Meade ETX-60AT. The authors included some other images here too from 

this old telescope and an explanation of how they accomplished them. 

Then enhancement is provided in the section “Example Images and 

Enhancing Them Using a Video Capture GUI.”

Figure 7-11 is a beautiful image of the Sea of Serenity taken with the 

4 ½-inch reflector.

Figure 7-11.  Moon: Sea of Serenity Image from 4 ½-Inch Reflector, 
April 8, 2018

The next image, Figure 7-12, is of Saturn taken using this system.

Figure 7-12.  Saturn from 4 ½-Inch Reflector, April 11, 2018

Chapter 7  Light and Imaging Projects



171

Figure 7-13 shows an image of Saturn that was taken from a video 

and processed per the steps listed in the section “Example Images and 

Enhancing Them Using a Video Capture GUI”.

Figure 7-13.  Enhanced Saturn Image from 4 1/2-Inch Reflector, 
April 25, 2018

Figure 7-14 is an image of Jupiter from a video that was taken with the 

4 ½-inch reflector and enhanced using the techniques outlined in Section 

7.2.9. It was the first time from this 40-year-old telescope the authors had 

been able to discern the great red spot!

Figure 7-14.  Enhanced Jupiter Image from 4 1/2-Inch Reflector, 
May 4, 2018

Chapter 7  Light and Imaging Projects



172

�Components Needed to Assemble the  
Raspberry Pi 3 Mounting System to the  
4 1/2-Inch Telescope
This system is relatively simple and does not require as complex a system 

to mount the Raspberry Pi 3 as the Meade ETX-60AT telescope; see 

Figures 7-15 through 7-19 for details on the mounting system and that will 

allow attaching a Raspberry Pi to this older telescope.

Sighting this telescope on a distant planet like Saturn is a little difficult. 

The authors found it best to find it first with the eyepiece, then remove it, 

and insert the Raspberry Pi camera to get the image. Due to the Earth’s 

rotation, the image moves rather quickly across the telescope’s view, so the 

astronomer will need to install the Pi camera and take the image quickly.

Figure 7-15.  4 1/2-Inch Reflector with Raspberry Pi

Chapter 7  Light and Imaging Projects



173

Figure 7-16.  Hose Clamp for Body-Mounted Raspberry Pi 3

Figure 7-17.  Close-Up of Body-Mounted Version

Chapter 7  Light and Imaging Projects



174

Figure 7-19.  Parts for the Body Mount System

Figure 7-18.  Body-Mounted Raspberry Pi System

Chapter 7  Light and Imaging Projects



175

After adding the Raspberry Pi and camera, the 4 1/2-inch reflector 

telescope is now set up and ready to take some pictures of the larger planets.

�Reflector Telescope Setup Recap
Turning these two older telescopes into modern astrophotography 

machines was a real joy. The next sections detail first a simple method 

without programing to start taking images. Later sections detail how 

to program two GUIs for easy picture and video captures. The final 

sections provide details on building the complex shelf set up to attach the 

Raspberry Pi to the Meade ETX-60AT.

�Basic Raspistill Previewing an Image 
with the Terminal Command Line
If the reader is not interested in programming the Raspberry Pi, these first 

methods using built-in tools and simple commands in the terminal are 

perfect for using the system right away. Later sections provide code that 

creates a nice GUI. One other use for Raspistill is to test the Raspberry 

Pi camera and the telescope system to make sure it is functioning before 

starting to work on the GUI described in later sections.

The first method that the authors used to capture images is the 

onboard program named Raspistill. Todd Franke provided the info on how 

to use this very useful tool.

Using Raspistill requires a keyboard to type in commands in the 

terminal program command line. This is very similar to using the old 

DOS program line. Using a keyboard is a little awkward when the scope is 

outside and it’s dark. Functionally however, the program works very well. 

See Figure 7-20 for the terminal input.

Chapter 7  Light and Imaging Projects



176

Figure 7-20.  Raspistill Typed into Terminal Command Line

Figure 7-20 previews an image for an extended period of time. In this 

example, the program previews images for 100,000 milliseconds (i.e., 100 

seconds) or a little more than 1 1/2 minutes. If you just want to show the 

image to others, this might be a nice long view.

The preview length shown at the top of the screen to the right uses the 

following command:

Raspistill –t 100000.

If the astronomer is planning to take a number of photos, this might be 

too long, and the time can be shortened. If no time is specified, it previews 

for 5 seconds.

Note H aving the preview for an extended period is a great way to 
focus the telescope. In the case of the Meade telescope, the focus 
knob is at the end of the body tube and moves the front lens forward 
and backward.

Chapter 7  Light and Imaging Projects



177

�Using Raspistill to Capture an Image
Another way to use Raspistill is to capture an image. The following needs 

to be typed into the terminal command line:

raspistill -o cam.jpg

Raspberry Pi 3 saves an image with the name cam.jpg. The following 

site provides additional information regarding using Raspistill including 

how to add a time stamp to the image captured:

www.raspberrypi.org/documentation/usage/camera/raspicam/

raspistill.md

�More Advanced Raspistill Input Without 
a Keyboard
The authors also came up with a way to input the commands using only 

a mouse. This is a lot less awkward outside at night during an observation 

session. It requires some setup time prior to the observation session. 

The astronomer uses either the simple text editor or a program on the Pi 

called Libre Word Processor. Use these programs to set up the Raspistill 

commands in a file. Using only a mouse, the astronomer can open the 

document file and then highlight, copy, and paste the text command into 

the command line. This capability simplifies and reduces commanding 

time. The no-keyboard configuration may also make it easier to operate 

outside during an observation session.

One important trick to make this work is inserting a return or a line 

break at the end of the line of code. The astronomer is able to shorten 

the time it takes to use the Raspistill commands by typing them in by 

performing the following steps:

Chapter 7  Light and Imaging Projects

http://www.raspberrypi.org/documentation/usage/camera/raspicam/raspistill.md
http://www.raspberrypi.org/documentation/usage/camera/raspicam/raspistill.md


178

	 1.	 Save the document on the Raspberry Pi desktop.

	 2.	 Open the document.

	 3.	 Open the terminal command line.

	 4.	 Copy and paste the line and the line break into the 

command line in the terminal program.

The results of these steps can be seen in Figure 7-21.

Figure 7-21.  Copy and Paste Commands into Script Line

Chapter 7  Light and Imaging Projects



179

The authors used these stored commands:

  raspistill – t 70000

  raspistill –t 10000

  raspistill –o pic20.jpg

 raspistill –o pic30.jpg

The first two of these commands turn the preview on for 10,000 or 

70,000 milliseconds, which is equivalent to 10 or 70 seconds. The 70 

seconds is probably needed to focus the object. The 10 seconds is enough 

to look quickly before taking a picture and to ensure the object is still in 

view or in focus. The next two commands take a picture. It names the file 

image pic20.jpg or pic30.jpg.

The astronomer will need to change the file name or move these files 

from the Raspberry Pi, or the Raspistill will overwrite them the next time 

you run these lines of code.

The astronomer can insert his/her own code into the command file if 

some other name is desired.

�Raspistill Image Capture Recap
Since the Raspberry Pi is a full-blown computer, there are already built-

in tools that the reader can access and use. If the reader would like to 

automate taking images, the next section provides code to develop a GUI 

using the built-in Tkinter module.

�Astrophotography Raspberry Pi Python GUI
The authors wanted to minimize working on coding, yet provide an easy 

way to operate the Raspberry Pi 3 camera and functionally provide great 

images, such as that shown in Figure 7-4. There are sites that provide 

Chapter 7  Light and Imaging Projects



180

excellent information regarding GUIs and the Raspberry Pi 3 camera, 

and they can aid in minimizing programming and provide useful and 

easy methods to operate the telescope with a Raspberry Pi 3. For other 

astronomers who are interested in more intricate or elaborate coding, there 

are sites that may provide starting points to develop their own version.

The following site provides the astronomer with a good basic 

understanding of how to set up a GUI to command the Raspberry Pi 3 to 

perform a desired function and was the starting point for the authors’ code 

in Listing 7-2:

http://robotic-controls.com/learn/python-guis/basics-tkinter-gui

This site contains a very impressive GUI design for operating the 

Raspberry Pi camera, for those who want to adjust and manipulate the image:

www.raspberrypi.org/forums/viewtopic.php?t=47857

The authors chose a more modest path and created the following code 

that runs in Tkinter and uses the Pi camera program to capture and display 

the images shown in this book. Figure 7-22 shows this very straightforward 

GUI. It reminds the authors of the view screen on the bridge of the 

Enterprise in the Star Trek in the original series TV shows!

Figure 7-22.  GUI for Raspberry Pi Camera

Chapter 7  Light and Imaging Projects

http://robotic-controls.com/learn/python-guis/basics-tkinter-gui
http://www.raspberrypi.org/forums/viewtopic.php?t=47857


181

The code shown in Listing 7-2 has three main parts:

	 1.	 The first part is setting up the Tkinter main window 

and camera basic functions.

	 2.	 The second part of the program initializes the 

widgets that run the commands when you click the 

buttons.

	 3.	 The third part configures how the window should 

look. Once that is complete, root.main loop () starts 

up the program and will not run or load anything 

after that point.

The faint numbers are line numbers for the code; they need to be 

deleted if the reader copies this code. Be sure that the indention for the 

program is identical to what is shown in the following. The indention is 

how the Python compiler knows what is in scope or not.

Listing 7-2.  Raspberry Pi Code PI_SN003_Astrophotograhy_Image 

Capture

0 #Code Developed by Paul Bradt

1 import tkinter as tk

2 import picamera

3 import os

4 import traceback

5 import datetime

6 import time

7 import sys

8 pwd = os.getcwd()

9 root = tk.Tk() #makes the window

10 �root.geometry('200x1100+0+0')# Z x Y is how big window is 

and +0+0 is where window starts

11 camera = picamera.PiCamera()

Chapter 7  Light and Imaging Projects



182

12 �root.wm_title("Camera GUI Program") #Makes the title that 

will appear      in the top left

13 �root.config(background = "#FFFFFF") #Sets background color 

to white

14 #put widgets here

15 def previewcapture():

16                �camera.start_preview (fullscreen=False,window 

= (200,0,1100,640))

17 def picapture():

18        try:

19               �now = datetime.datetime.now().strftime 

("%F -- %X") + '.jpg'

20              debugLog.insert(0.0, "Date Initialization Done\n")

21               debugLog.insert(0.0, now + "\n")

22               time.sleep(5)

23                camera.capture(now, format = 'jpeg')

24                debugLog.insert(0.0, "Camera Capture Done\n")

25        except:

26                print(traceback.format_exc( limit=10))

27 def stopcapture():

28        camera.stop_preview()

29 #Main Frame and its contents

30 mainFrame = tk.Frame(root, width=200, height = 900)

31 mainFrame.grid(row=0, column=1, padx=10, pady=2)

32 btnFrame = tk.Frame(mainFrame, width=200, height = 200)

33 btnFrame.grid(row=1, column=0, padx=10, pady=2)

34 debugLog = tk.Text(mainFrame, width = 20, height = 10, takefocus=0)

35 debugLog.grid(row=3, column=0, padx=10, pady=2)

36 �previewBtn = tk.Button(btnFrame, text="Start Preview", 

command=previewcapture)

37 previewBtn.grid(row=0, column=0, padx=10, pady=2)

Chapter 7  Light and Imaging Projects



183

38 �cameraBtn = tk.Button(btnFrame, text="Take a Picture", 

command=picapture)

39 cameraBtn.grid(row=1, column=0, padx=10, pady=2)

40 �stopBtn = tk.Button(btnFrame, text="Close Preview", 

command=stopcapture)

41 stopBtn.grid(row=2, column=0, padx=10, pady=2)

42 �root.mainloop() #start monitoring and updating the 

GUI. Nothing  below here runs.

The light-gray numbers at the start of the line represent the line of code 

and are not in the program.

Make sure this code is saved in a file as “your file name here.py” for 

Python and saved in the main folder.

�Initiating the GUI

	 1.	 Open Programming and then open Python.

	 2.	 Open the file that contains the preceding program.

	 3.	 Open Run and then Run module.

The authors learned these tips and tricks while developing this code.

If for some reason the window does not show up, it may be outside the 

view of the monitor. The following part of the code

root.geometry('200x1100+0+0')

sets the location of the GUI at 200 × 1100 pixel sizes. It is the window size, 

and +0+0 is the x–y position using pixels again. The code may need to 

be adjusted to move the location to a different one. The authors wrote 

this code to match the 7-inch touchscreen. For other monitor sizes, the 

programmer may need to change the position and size to fit.

Chapter 7  Light and Imaging Projects



184

The authors found that the touchscreen can be used to take a picture, 

but it might set up a vibration and potentially blur the image. Using a 

wireless mouse prevented that from happening.

�PI_SN003 Raspberry PI GUI Recap
This program PI_SN003 is very easy to use during an observation session. 

It lets you observe the object constantly, and then when the perfect image 

appears, with a simple click of the mouse you capture a fantastic image!

�Assembling the Raspberry Pi and 
Touchscreen in the Case
There is a bit of engineering required to develop the system that connects 

the Raspberry Pi to the Meade ETX-60AT. The first part is the housing and 

touchscreen which is a nice package for the system. The second part shows 

how to 3D print the Pi camera case. The final part is the shelf bracket that 

grips the telescope and holds the Raspberry Pi/touchscreen assembly.

�Raspberry Pi, Touchscreen, and Case
This section describes the assembly of the Raspberry Pi, touchscreen, and 

housing for them. One of the key features for this project is the touchscreen 

to show the image to ensure it is in focus. The 7-inch screen is an excellent 

choice for this application, as it is large with good contrast and definition. 

The authors found a case they liked that nicely integrated the touchscreen 

and the Raspberry Pi 3. It was also easy to modify the case with a single 

hole and add a RIVNUT to attach it to the shelf.

Chapter 7  Light and Imaging Projects



185

The parts needed are

•	 Raspberry Pi 3 Model B (≈$25)

•	 Raspberry Pi 7-inch touchscreen (≈$80)

•	 Raspberry Pi camera V2 (≈$30)

•	 Premium case for Raspberry Pi 7-inch touchscreen 

(≈$17); Digi-key part#: ASM-1900035-21

•	 Camera cable, 12 inches long (≈$2)

•	 Two 5-volt Raspberry Pi power supplies with a micro-

USB connector (≈2 × $7.50)

•	 Cable wrap to combine power supply cords ($3)

•	 8-32 RIVNUT

•	 8-32 × ¾ flat head screw

Total cost ≈ $185

For remote operations where there is no power, the reader may want 

to use a power inverter. It is a device that plugs into a lighter connection 

in a car and changes the DC to AC and can power the Raspberry Pi and 

touchscreen. The authors needed this device to capture the eclipse images. 

The model used was the remote operations power inverter ($35), Wagan 

Tech part number: SmartAC 200 USB+.

�Modification of the Case and Assembly
The authors made two modifications to the Raspberry Pi 3 case. The first is 

drilling a hole so that the RIVNUT could be attached. A RIVNUT, as seen in 

Figure 7-23, is a unique device which is installed like a rivet and therefore 

is locked to the housing. Internally, it has female threads so that a screw 

can be threaded into it. The installation procedure is shown in Figure 7-24.

Chapter 7  Light and Imaging Projects



186

Figure 7-25 shows it installed in the Raspberry Pi touchscreen case.

Figure 7-24.  RIVNUT Installation Procedure

Figure 7-25.  RIVNUT Installed in the Case

Figure 7-23.  RIVNUT

Chapter 7  Light and Imaging Projects



187

An alternative to the RIVNUT approach is to simply glue a small nut 

inside the case using epoxy. This should be adequate to apply enough 

torque to secure the Raspberry Pi to the shelf.

One other important aspect is to apply tape over the end of the 

RIVNUT. This will catch any potential metal shavings when the screw is 

threaded into the case, clamping it down. Metal shavings could potentially 

short out circuit paths or connections which could damage the Raspberry Pi.

The second modification was gluing a small piece of plastic to the 

inside of the case to aid in restraining the ribbon cable as it twists to exit 

the case; this can be seen in Figure 7-26.

Figure 7-26.  Modification to the Case Backplate

Chapter 7  Light and Imaging Projects



188

As a reminder, the touchscreen and case the authors selected result in 

the image being upside down initially. The following command must be 

added to the CONFIG.TXT file:

lcd_rotate=2

The case comes with instructions regarding this modification to the 

Raspberry Pi 3 setup.

�Components and Assembly of the Raspberry Pi 
Case Recap
This case was perfect for this application; it had a great place to use for 

mounting to the shelf and contained the touchscreen and the Raspberry 

Pi. It has been used on many observation outings with no issues.

�Camera Modifications, Camera Case, 
and Power Cables
The telescope becomes the lens for the Raspberry Pi camera, so the lens 

that comes with the camera must be removed. This section also describes 

making the camera case using 3D printing and the final assembly of the 

camera/case.

�Camera Modifications
It is a little tricky, because two tools are needed to carefully remove the 

lens. One set of pliers holds the outside of the camera, and then the lens 

must be rotated out with forceps or another small tool (Figure 7-27).

Chapter 7  Light and Imaging Projects



189

�Building the Camera Case
3D printing is an awesome technique that provides a unique way to 

create many different shaped parts. This is similar to the replicators in the 

original Star Trek series. Many creator spaces online can help a person 

develop parts using the 3D printing process. Mitch Long was very helpful 

in showing the authors how to create these camera cases.

The first step is to use computer-aided design (CAD) software to create 

a virtual model. The next step is to load that model in the correct format 

into the 3D printer, which uses a device that heats a material so that it flows 

easily. It precisely controls laying the melted material, layer upon layer, 

leaving voids in accordance with the input model, and gradually shaping 

the object until completion in each dimension. Hence, the process actually 

creates a 3D hardware object using a procedure that is partially analogous 

to ordinary paper printing.

The authors used a CAD program (see Appendix) to design and build 

the Raspberry Pi camera case. They output it in an STL format and took 

that (Figures 7-28 to 7-31) to a local library that had a 3D printer (MakerBot 

Replicator2). In about an hour, the basic part was completed.

Figure 7-27.  Removing the Lens from Pi Camera

Chapter 7  Light and Imaging Projects



190

The authors then drilled and tapped four holes for a flat cover plate as 

illustrated in Figures 7-32, 7-33, and 7-34, and the camera case was nearly 

ready to be used.

The authors have uploaded their Pi camera case to Thingiverse, which 

is a repository of 3D files. The authors created both a version for the 

Meade ETX-60AT (1 ¼-inch diameter) and the 4 ½-inch telescope (1-inch 

diameter). The files are located at the following site:

www.thingiverse.com/thing:2885450

Figure 7-28 shows the image of the camera case in the CAD program.

Figure 7-28.  Camera Case for Raspberry Pi, Ready for 3D Printing

The dimensions for the camera case are shown in Figure 7-29.

Chapter 7  Light and Imaging Projects

http://www.thingiverse.com/thing:2885450


191

Figure 7-29.  3D Printed Camera Case (Dimensions in Inches)

Note  Drawings in this book may not be to scale.

The camera case is starting to take shape in Figure 7-30.

Chapter 7  Light and Imaging Projects



192

Figure 7-30.  3D Printer: Camera Case Taking Shape

The material used to print the camera case was standard black 

PLA (polylactic acid) which is a common material for 3D printers. The 

MakerBot slicer software sets up the file for 3D printing. The slicer software 

used by the authors is CURA. A few parameters are set that relate to the 

fill and the supports. To minimize material, the shape is mostly hollow. 

The fill percentage creates a honeycomb structure inside the shape. The 

authors set it at 20% since it will be drilled and tapped. Typically the fill is 

set at 10%. Another setting that was selected is to add supports; these keep 

a section with nothing under it from collapsing as it cools. The supports 

will need to be removed after the shape is finished printing as seen in 

Figure 7-31.

If the reader does not have access to a 3D printer, there are several 

companies that will (for a fee) print out an object. Shapeways is one:  

www.shapeways.com.

Chapter 7  Light and Imaging Projects

http://www.shapeways.com


193

Figure 7-31.  Cleaning Up the 3D Printed Camera Case

Figure 7-31 shows how the case comes from the printer and the items 

that need to removed. The first step is to remove what is called the raft. It 

is the plate that the 3D printer puts down first and ensures the print has 

a solid base to prevent warping. The next step is to remove the supports 

which were located in the square box of the camera case.

To finish the camera case, cut a small styrene sheet (0.030 inches 

thick) of plastic 1 ½ × 1 ½ inches square (Figure 7-32). Draw lines that 

guide where the holes will be drilled. If you use the authors’ 3D case on 

Thingiverse, the holes should be approximately 0.095 inches in from 

the edge.

Chapter 7  Light and Imaging Projects



194

Tape the cover in place on the camera case (Figure 7-33) and drill 

through the cover plate, keeping the drill bit perpendicular to the plate. 

When the drill penetrates the cover plate, it leaves a mark where the hole 

will be drilled in the case. The reader can use extra 2-56 tap drill bits to 

help with alignment by placing them in each hole as it is drilled to keep the 

parts lined up. Otherwise, make sure the tape keeps the plate from shifting 

when drilling the next hole.

The authors cut a small notch in the cover and the case to guide the 

assembly. This is done while the tape is still in place and helps to ensure 

the cover can be placed in the correct orientation later, so that the holes 

line up properly after the tape is removed. Tap the holes using a 2-56 tap. 

Then the last modification is to file a slight gap for the camera cable to pass 

through. See Figures 7-33 and 7-34.

Figure 7-32.  Camera Case Cover (Dimensions in Inches)

Chapter 7  Light and Imaging Projects



195

Figure 7-33.  Drilling Screw Holes in the Camera Case

Figure 7-34.  Tapping the Screw Holes in the Camera Case

Chapter 7  Light and Imaging Projects



196

�Final Assembly of the Camera in the Case
Finally, add two pieces of double-sided foam tape to help prevent the 

camera from shifting in the case (Figures 7-35 and 7-36). Then insert the 

camera into the case and tighten the screws. Make sure the camera does 

not shift out of the hole. The foam tape may not be tall enough to adhere to 

the case, so you may need two layers or put it on the cover plate.

However, if the astronomer does not want to utilize 3D printing for 

the camera case, the following web site describes a unique way to build up 

a similar case using a large modified SD card case and a piece of PVC pipe to 

construct it:

www.instructables.com/id/Raspberry-Pi-Astro-Cam/

Figure 7-35.  Foam Tape on Raspberry Pi Camera

Figure 7-36.  Final Assembly of Camera into Case

Chapter 7  Light and Imaging Projects

http://www.instructables.com/id/Raspberry-Pi-Astro-Cam/


197

�Power Cord Combination
The final aspect is a modification the authors made to the Raspberry Pi 

astrophotography system after using it for a short time. There are two 

power cables: one for the Raspberry Pi and the other for the touchscreen. 

They were constantly getting tangled up. The authors decided to wrap 

the two power cables with the slit cable wrap. This effectively created one 

power cable. See Figure 7-37. It significantly improved setup and cord 

entanglement issues.

Figure 7-37.  Power Cable Wrap

�Camera, Camera Case, and Power Cord  
Assembly Recap
This section outlines all of the changes needed to set up and assemble 

these key components for the Raspberry Pi astrophotography system.

�Building the Shelf for the Meade ETX-60AT
This section describes the steps needed to construct the shelf assembly 

which contains the clamping device that provides a secure mounting place 

for the Raspberry Pi to the Meade ETX-60AT telescope. The shelf assembly 

makes a self-contained, easily transported setup for the telescope and 

Chapter 7  Light and Imaging Projects



198

Raspberry Pi combination. This shelf requires a bit of woodworking skills, 

but each step is described. It provides the base for mounting the Raspberry 

Pi on and then using a clamp system that attaches it to Meade ETX-

60AT. Building this requires a bit of engineering skills, using mathematics 

to lay out the hole patterns, and some manufacturing skills to fabricate 

the parts. Each section shows the steps required to build each part. There 

are four main parts: the shelf, fixed clamp, movable clamp, and eye screw/

bracket (see Figures 7-38 and 7-39).

Figure 7-38.  Assembled Shelf

The shelf assembly is made up of the subassemblies shown in  

Figure 7-39. Each component will be described in detail in the next few 

sections. It may look somewhat complex, but it is really straightforward.

As always, safety first when using saws and tools, especially if the 

reader is not familiar with their operation. Remember to use hearing 

protection and safety glasses when using power tools such as saws and 

drills. Inexperienced young astronomers should get assistance from an 

adult or visit a maker group. These are groups around the country and are 

set up to aid people who want to learn how to make things.

Chapter 7  Light and Imaging Projects



199

Figure 7-40 shows the two areas that due to rotation of the scope to the 

vertical (overhead viewing) position may need some clearance added to 

the shelf and the fixed clamp. The authors did this, but the reader may find 

it unnecessary.

Figure 7-39.  Shelf Pieces

Figure 7-40.  Areas Modified to Ensure Clearance

Chapter 7  Light and Imaging Projects



200

Plywood shelf base

Material: 3/16-inch-thick plywood, 3 5/8 inches wide by 13 inches long

After the shelf is cut to size, the astronomer must modify it slightly 

by milling out a small area for clearance of the end of the telescope. The 

authors used a Dremel grinder to grind or mill out the clearance area. 

Figure 7-41 shows the top and bottom views of the shelf base along with 

the dimensions for the features and holes including the required milled-

out area. A summary of the modifications is shown in Figure 7-41.

Figure 7-41.  Shelf (Dimensions in Inches)

Chapter 7  Light and Imaging Projects



201

	 1.	 Mill out area for clearance.

	 2.	 One Raspberry Pi mounting hole.

	 3.	 Two holes for the fixed clamp.

	 4.	 One hole for the RIVNUT/bracket.

The authors used flat head screws so the holes must be countersunk on 

the shelf bottom.

Using the Dremel grinder tool, grind or mill out the clearance area, 

which is approximately 2 1/8 inches square and approximately 1/16–3/32 

inches deep.

Fixed clamp (Figure 7-42)

Material: 1/2-inch square wood that is 5 1/2 inches long

Figure 7-42.  Fixed Clamp

Summary of the modifications (See Figure 7-42):

	 1.	 Cut the ends at a 45-degree angle.

	 2.	 Chamfer one edge for clearance for telescope 

rotation.

	 3.	 Drill clearance holes for screws that are 2 1/8 inches 

apart and match the two holes in the shelf where the 

fixed clamp is attached.

Movable clamp (Figure 7-43)

Material: 1 ½ × 2 ½ × 5 ½-inch wood

Chapter 7  Light and Imaging Projects



202

Summary of the modifications (See Figure 7-43):

	 1.	 Cut the ends at a 45-degree angle.

	 2.	 One hole was drilled that matches the height of the 

RIVNUT/bracket.

The hole needs to be positioned so the movable clamp is slightly 

above and not resting on the shelf, so it does not drag when the eye bolt is 

tightened.

Bracket and RIVNUT (Figure 7-44)

Material: 1 inch × 1 inch angle bracket and RIVNUT

Figure 7-43.  Movable Clamp

Figure 7-44.  Angle Bracket with RIVNUT

Chapter 7  Light and Imaging Projects



203

Summary of the modifications (See Figure 7-44):

	 1.	 The hole in the bracket may need to be enlarged 

slightly for the RIVNUT to fit through prior to being 

expanded.

	 2.	 Install and expand RIVNUT in the same manner 

completed for the Raspberry Pi case.

�Shelf Components and Assembly Recap
This section provides details on how to fabricate and assemble the shelf 

and the interfaces between the telescope and the Raspberry Pi. It makes a 

nice integrated package and is easy to assemble.

�Helpful Hints Using the Telescope 
and Raspberry Pi
When the authors started using the astro-Pi telescope, they learned a few 

tricks and techniques that may be helpful to astronomers and science buffs:

	 1.	 Always make sure the telescope lens, camera, and the 

mirror are clean from debris, so that the astronomer 

captures a good clean image. The authors had several 

beautiful pictures ruined because of debris on the 

mirror that sends the image to the eyepiece.

	 2.	 If possible, plan ahead and position needed items 

for easy access. A table, power cords, and a flashlight 

are very helpful. Also, have the keyboard handy 

just in case you need to type in commands. The 

authors had to reboot the Raspberry Pi 3 during 

one observation session, because it locked up. They 

resorted to typing in the commands again.

Chapter 7  Light and Imaging Projects



204

	 3.	 If the astronomer copies and pastes commands into 

the script line, the authors recommend using the 

simple text editor rather than the word processor. 

The text editor seems more robust for setting this 

up, but you need to press “Enter” at the end of the 

line and make sure that you copy and paste this 

keystroke into the script.

	 4.	 Chairs for the astronomer and any other viewers 

make this an enjoyable experience.

	 5.	 To protect the touchscreen, the authors left the 

protective film on it. It did not seem to affect the 

functionality of the touchscreen and image quality, 

and it protected it from many bumps and potential 

scratches that occurred during assembly and use of 

the scope.

	 6.	 When doing the Autostar alignment of the Meade 

telescope, the authors found it helpful to cover the 

Raspberry Pi 3 screen with a cloth, because it is so 

bright that it makes it hard to see where the scope is 

pointing.

	 7.	 The authors sometimes accepted the Autostar 

alignment without verifying it through the eyepiece. 

If the telescope was in the general direction toward a 

bright star, then they accepted it. The fine alignment 

was done on the moon by loosening the yoke and 

adjusting it by hand.

	 8.	 The batteries for the Meade telescope tended to last 

no more than two or three observation sessions. 

It may appear as if it is working, but there may 

not be enough power to operate the motors in the 

Chapter 7  Light and Imaging Projects



205

upright yokes. The scope will rotate horizontally, 

but not vertically. If the astronomer does a lot of 

observing, she/he may want to invest in two sets of 

rechargeable batteries, always prepared to swap out 

discharged with charged batteries.

	 9.	 The authors used a power inverter to power the 

Raspberry Pi for a remote location. Make sure the 

configuration is tested before going remote, as it 

may or may not be able to supply enough current to 

drive the Raspberry Pi 3 and touchscreen.

The astronomer may want to try to power the 

Raspberry Pi 3 and touchscreen from a battery pack. 

The following web site explains how the astronomer 

may want to accomplish this goal. The site indicates 

the screen requires 500 mA and the Raspberry Pi 

draws 2.5 amps:

https://raspberrypi.stackexchange.com/

questions/49533/powering-the-pi-3-model-b-

with-a-battery-pack

On one remote observation session, the authors 

powered the Pi using an inverter plugged into the car. 

The inverter supplied a little over 2 amps, but had some 

surge capability. It worked fine and ran the system 

during one observation session for about an hour.

	 10.	 When focusing the Meade telescope, the primary 

lens moves up and down the barrel. As an aid, the 

authors put a piece of tape on the barrel and marked 

the location close to the normal focus for the moon. 

This helped to speed up focusing the scope during 

an observation session.

Chapter 7  Light and Imaging Projects

https://raspberrypi.stackexchange.com/questions/49533/powering-the-pi-3-model-b-with-a-battery-pack
https://raspberrypi.stackexchange.com/questions/49533/powering-the-pi-3-model-b-with-a-battery-pack
https://raspberrypi.stackexchange.com/questions/49533/powering-the-pi-3-model-b-with-a-battery-pack


206

	 11.	 The astronomer may want to do a screen capture at 

some point. For the Raspberry Pi 3, the command 

typed into the terminal program is “scrot,” and it will 

save the image in the main folder with date and time 

info in the file name.

	 12.	 An important lesson the authors learned is that the 

Raspberry Pi 3 power supply needs to deliver the 

amount of current required. The authors used one 

official Raspberry Pi 3 power supply and one random 

spare supply. It turned out that spare one would not 

deliver enough current to the Pi. It worked well for 

the touchscreen monitor. The system would crash 

often if the wrong power supply was used to power the 

Raspberry Pi 3. This caused a lot of challenges until the 

cause of the crashes was determined and corrected.

	 13.	 A wireless mouse eliminated one cable and made 

the system easier to use outside. The touchscreen 

can be used to activate the “take picture” button on 

the GUI, but the astronomer may cause a vibration 

or other movement when using it and potentially 

blur the image.

	 14.	 The authors had some challenges using a flash 

drive with the Raspberry Pi. It may be caused by the 

configuration. Normally the files are not too large, 

so it is easy to email the images. The authors used 

Gmail to do this on the Pi.

	 15.	 The authors found it very helpful to have a program 

on their personal computer that helps identify 

the location of the planets and stars. The program 

Stellarium, used by the authors, is an open source free 

code that does a great job: http://stellarium.org/.

Chapter 7  Light and Imaging Projects

http://stellarium.org/


207

	 16.	 The authors found the following helpful site while 

researching this project, which contains a lot of 

great images and information about the moon:  

www.alanchuhk.com/.

This book does not focus on how to take videos using this system, but 

there are real benefits for image enhancement using a video. One way to 

obtain a video is using the program Raspivid which works in a similar way 

to Raspistill.

�Lessons Learned Recap
After several observation sessions, the authors learned several lessons they 

wanted to pass on to the reader. These items help to make a fun successful 

observation session and can improve the experience for everyone involved.

�Example Images and Enhancing Them 
Using a Video Capture GUI
The authors also developed a GUI that will take a video (the code is shown 

later in this chapter). It is a modification to the authors’ camera GUI. It will 

create a video file with a unique file format that will need to be converted 

to standard formats. This is described after the video GUI code.

If the astronomer becomes very interested in cleaning up the images, 

there is a protocol called Planetary Image Pre-processing and image 

stacking. It requires a video file and does an amazing job of overlapping 

and correcting images. There is a short overview of these techniques later 

in this chapter, but significant detail is beyond the scope of this book. The 

authors thank Jeff Dunehew for providing the process to use videos to 

create enhanced images. As the astronomer gains skills with their system, 

this amazing technology can be explored.

Chapter 7  Light and Imaging Projects

http://www.alanchuhk.com/


208

�Example Images Taken with the Upgraded 
Meade ETX-60AT Astrophotography System
The image in Figure 7-45 was taken when the temperature outside was 32 

degrees Fahrenheit, and the Raspberry Pi 3 worked well. The crater details 

near the terminator are fascinating. With a little math, the astronomer 

might be able to determine a rough height for the crater wall given the 

known diameter of the moon.

Figure 7-45.  Moon on January 13, 2018

Figure 7-46, taken early morning on January 29, 2018, clearly shows 

Jupiter and three of its moons. One unique historical fact regarding the 

Jovian moons is that Galileo used them to reason that the Earth orbited the 

sun. Over time he observed the paths of Jupiter’s moons with respect to the 

planet. They were not stationary, and the only way he could explain those 

positional changes was orbital paths around Jupiter. Once he understood 

the orbital hierarchy of objects in the solar system, he reasoned that a 

similar orbital path existed in the Earth/sun relationship.

Chapter 7  Light and Imaging Projects



209

With the Raspberry Pi attached to the telescope, you too can capture 

sequential images over time and observe phenomena such as the motion 

of Jupiter’s moons as they orbit the planet just like Galileo.

This set of images (Figure 7-47) of the lunar eclipse was taken on 

January 31, 2018, just as the moon was setting. It exemplifies time-lapse 

photography as it shows the progression of the eclipse in approximately 

10-minute increments. One item of note that can be seen in the images is 

the terminator line is not very sharp. Compared to normal phased moon 

images, the terminator here appears “fuzzy.” In a lunar eclipse, as the Earth 

passes between the sun and moon, particles in the Earth’s atmosphere 

degrade the sun’s light before it strikes the moon and produce the fuzzy 

nature of the terminator.

Figure 7-46.  Jupiter and Its Three Moons on January 29, 2018

Chapter 7  Light and Imaging Projects



210

The next photo is of a full moon that occurred on March 1, 2018  

(See Figure 7-48). It is pieced together from individual sections, as the 

whole moon does not fit in the screen.

Figure 7-47.  Lunar Eclipse on January 31, 2018

Figure 7-48.  Full Moon on March 1, 2018

Chapter 7  Light and Imaging Projects



211

Using an image such as this, the astronomer can start finding and 

labeling craters and features on the moon they observe.

Finally, one more image, Figure 7-49, taken with the Meade ATX-60AT, 

was of a full moon on April 19, 2019. It shows the southern region very 

nicely and the crater Tycho.

Figure 7-49.  Full Moon on April 19, 2019, Southern Region

�Example Images Taken with the Upgraded 4 1/2-Inch 
Reflector Telescope Astrophotography System

The photos in this section were taken with the 4 ½-inch reflector using the 

body mount method previously described. It was a 40-year-old reflector 

telescope! There are some blemishes on the mirror, but they don’t impact 

the image. The tripod and vernier controls still work well.

Making an Astronomical Video and Creating Enhanced 
Images

The following images (Figures 7-50 to 7-52) are repeated to demonstrate 

how an image can be enhanced using the video GUI Python program and 

the steps outlined later in this section.

Chapter 7  Light and Imaging Projects



212

Figure 7-50 is unenhanced image and 7-51 is after enhancement.

Figure 7-50.  Saturn from 4 1/2-Inch Reflector, April 11, 2018

Figure 7-52.  Enhanced Jupiter Image from 4 1/2-Inch Reflector, 
May 4, 2018

Figure 7-51.  Enhanced Saturn Image from 4 1/2-Inch Reflector, 
April 25, 2018

Figures 7-51 and 7-52 are enhanced images using the techniques 

outlined in this section.

Figure 7-52 is the enhanced image taken with the 4 1/2-inch reflector 

showing the red spot and bands of Jupiter. This was the first time using 

this telescope the authors had seen the red spot and it was because of the 

enhancement techniques!

Chapter 7  Light and Imaging Projects



213

The following Raspberry Pi code (Listing 7-3) was used to capture the 

videos that created single images which were then enhanced to create 

the preceding images. The faint numbers are line numbers for the code; 

they need to be deleted if the reader copies this code. Be sure that the 

indention for the program is identical to what is shown in the following. 

The indention is how the Python compiler knows what is in scope or not.

Listing 7-3.  Raspberry Pi Code PI_SN004_Astrophotograhy_Video 

Capture

0  #Code Developed by Paul Bradt

1  import tkinter as tk

2  import picamera

3  import os

4  import traceback

5  import datetime

6  import time

7  import sys

8  import subprocess

9  from subprocess import Popen, PIPE, CalledProcessError

10  pwd = os.getcwd()

11  root = tk.Tk() #makes the window

12  root.geometry('200x1100+0+0')

13  camera = picamera.PiCamera()

14  �root.wm_title("Camera GUI Program") #Makes the title that 

will appear in the top left

15  root.config(background = "#FFFFFF") #Sets background color 

to  white

16  global now

17  #put widgets here

18  def picapture():

19       try:

Chapter 7  Light and Imaging Projects



214

20                global now

21                debugLog.insert(0.0, "Date Initialization Done\n")

22                now = datetime.datetime.now().strftime("%F_%X")

23                debugLog.insert(0.0, now + "\n")

24                �camera.start_preview (fullscreen=False, 

window = (200,0,1100,640))

25               camera.start_recording('/home/pi/' + now + '.h264')

26       except:

27                print(traceback.format_exc(limit=10))

28  def stopcapture():

29                camera.stop_recording()

30               camera.stop_preview()

31  #Main Frame and its contents

32  mainFrame = tk.Frame(root, width=200, height = 900)

33  mainFrame.grid(row=0, column=1, padx=10, pady=2)

34  btnFrame = tk.Frame(mainFrame, width=200, height = 200)

35  btnFrame.grid(row=1, column=0, padx=10, pady=2)

26  �debugLog = tk.Text(mainFrame, width = 20, height = 10, 

takefocus=0)

27  debugLog.grid(row=3, column=0, padx=10, pady=2)

28  �cameraBtn = tk.Button(btnFrame, text="Start recording", 

command=picapture)

29  cameraBtn.grid(row=1, column=0, padx=10, pady=2)

30  �stopBtn = tk.Button(btnFrame, text="Stop recording", 

command=stopcapture)

31  stopBtn.grid(row=2, column=0, padx=10, pady=2)

32  �root.mainloop() #start monitoring and updating the 

GUI. Nothing  below here runs.

Chapter 7  Light and Imaging Projects



215

�Image Creation and Enhancement from a Video

These excellent image enhancement techniques were provided by Jeff 

Dunehew. The first step is to convert the video to a useable format and 

then use it to create an improved image. There are three tools that the 

reader will need to download: VLC media player, PIPP, and Registax. 

Download the full version of Registax (size is about 3 MB).

Converting the file to a normal video:

To open the “.h264” files that the Raspberry Pi 

creates in Windows

Install VLC player.

Open VLC player.

Drag the file onto the VLC player app.

Note: You don’t need to do this section; this is just to 

watch your video without doing any conversion.

To prepare the file to convert:

Open VLC player.

Click Media ➤ Convert/Save.

Click Add. Open the h264 file you saved that you 

want to convert.

Then select the Convert/Save button at the bottom 

right.

Select the destination toward the bottom of the 

next window. It will allow you to change file types if 

necessary. “.mp4” files seem to work great.

Once the file is converted to “.mp4”, you want to use PIPP to align the 

video where the planet is always in the middle:

Chapter 7  Light and Imaging Projects



216

Open PIPP.

Drag the “.mp4” video into the file window.

Check the planetary radio button at the bottom of the window.

Click Processing on the menu at the top and then start processing.

Once it is done, it will create a PIPP file folder in whatever directory 

your original “.mp4” video was in. The new video in the PIPP folder will 

have the planet aligned in the middle and will have an .avi format.

Registax is the tool that will rip the images out of the video and stack 

them in order to enhance the image. The following steps are what the 

authors used to create some of the images in this book.

There are several steps that the astronomer needs to take when 

using Registax. It is also a bit of trial and error to obtain images that are 

enhanced without too much enhancement:

	 1.	 Load the .avi file that was created using PIPP into 

Registax.

	 2.	 To set the alignment points, it is best to step through 

the frames of the video and find a good image that 

has the features you want to use for alignment. Click 

each alignment point. Registax leaves a little circle 

for each alignment point.

	 3.	 To do the alignment, click Align, and then the software 

goes through the video and tries to find key images that 

have the alignment points and then lines them up.

	 4.	 This step is a bit of trial and error; this process is called 

limit, and it tells Registax how to limit the number of 

frames used for the stacking process. The astronomer 

needs to select either the best percentage of frames to 

use or the actual number of best frames to use. Again 

this requires a bit of trial and error.

Chapter 7  Light and Imaging Projects



217

Then click Limit to reduce it down to the frames selected.

	 5.	 Next, click Stack. Stacking images creates a single 

image with the focused parts of all the images.

	 6.	 After it is finished stacking the images, click the 

Wavelet tab and use the slider bars to adjust the 

image to enhance it.

	 7.	 Once the astronomer has a clean enhanced image 

they are happy with, they need to save it.

The following YouTube video is a very good overview of this process:

www.youtube.com/watch?v=JkTiVdx30CQ

Recap of Example Images and Enhancement 
Techniques
This section shows a few images captured by the authors and provides a 

high-level overview of some of the tools and techniques used to enhance 

and create some spectacular images of the two largest planets in the Solar 

System.

�Summary
This chapter provides the reader with some very exciting projects that 

expand on the use of the Arduino and Raspberry Pi to capture and record 

data regarding light and astronomical images in a way that would have 

been impossible just a few short years ago. The introduction of powerful 

devices like the light sensor and advanced digital cameras makes this 

possible. Add on the ability to utilize and share the data via computers, 

and again that approaches the original Star Trek tricorder!

Chapter 7  Light and Imaging Projects

http://www.youtube.com/watch?v=JkTiVdx30CQ


219© Paul Bradt and David Bradt 2020 
P. Bradt and D. Bradt, Science and Engineering Projects Using the Arduino and Raspberry Pi,  
https://doi.org/10.1007/978-1-4842-5811-8

APPENDIX

Reference Material
This appendix contains some additional useful information regarding 

various projects in this book.

�Soldering Safety
Soldering can be an enjoyable experience, but occasionally a difficult 

soldered connection can also be a frustrating experience. These tips will 

help to make it a safe experience. First, make sure you understand the 

basics of soldering. If unsure, take a basic class in electronics:

•	 Practice on scrap wires.

•	 Use fixtures or objects to hold the pieces in the proper 

configuration.

•	 Avoid breathing the fumes from the soldering iron.

•	 Always remember the soldering iron tip and recently 

heated soldered connections are very hot.

•	 Always remember to wear safety glasses to protect  

your eyes.

•	 Remove flammable objects from the area.

https://doi.org/10.1007/978-1-4842-5811-8#ESM


220

�General Shop Safety
This section contains some good shop practices to keep the reader safe:

•	 Always, always use eye protection; it is amazing the 

number of times something will come loose when 

working on it.

•	 Use extreme care when handling sharp objects like 

saws, knives, or screwdrivers. Again, when using these 

items, you can slip or lose control and accidentally cut 

yourself.

•	 Use caution and be very careful when using power 

tools. They are made to cut or remove metal or wood 

material. The reader’s hand is much softer material and 

will be easily cut or bruised.

•	 Finally, it is a very good idea to stop before doing a job 

and think about what could go wrong. Ask questions 

like “Is that frayed electrical cord going to short out?” or 

“Is that box balanced on top of things going to fall when 

I work under it?” This is the start of good job hazard 

analysis and is very important to work safely.

�Manufacturing Techniques
The force sensor used in the zero gravity and friction experiments needs 

to have wires soldered to be able to connect it to the Arduino. Figure A-1 

shows how the sensor and wires were held in place to do the soldering 

using a piece of scrap wood and some tape.

APPENDIX  Reference Material



221

�Soldering
Tips (if the researcher is unfamiliar with soldering, please read section 

“Soldering Safety” first):

	 1.	 Start on one wire.

	 A.	 Strip the wires.

	 B.	 It is easier with these connections to bend up one lead  

at a time.

	 C.	 Solder the wires by touching the solder iron tip to the 

connection and then adding a little solder.

	 D.	 Move the shrink tubing up the sensor to cover the solder 

joint. Make sure it goes up to the sensor.

	 E.	 Use a heat gun to melt the shrink tubing. The soldering iron 

can be used, but be very careful to only touch it very lightly, 

and move it quickly away from the tip.

Figure A-1.  Soldering Technique for Force Sensor

APPENDIX  Reference MaterialREFERENCE MATERIAL



222

	 2.	 Repeat on the other wire.

Another slightly tricky soldering job is the wire 

harness to the MCP9700 sensor used in the rod 

conduction project and the convection project. 

Figure A-2 shows the assembled sensor. The authors 

found the best way to solder this is to bend one leg 

up, slide the heat shrink tubing onto the wire, make 

the solder connection, slide the heat shrink tubing 

down, and shrink it. Finally, bend it back in line with 

the others. Bending the leg up gives room to work. 

Be careful to not break the wire. Do the other two 

connections the same way. Make sure not to break 

the leg off the transitor.

�Basic Arduino and Raspberry Pi Python  
Commands
The following list is a handy starting point to understand some common 

Arduino and Raspberry Pi Python commands. It is meant to help someone 

very new to these devices get a basic understanding of these commands.

Figure A-2.  MCP9700 Temperature Sensor and Wire Harness

APPENDIX  Reference Material



223

�Some Key Arduino Code Commands

The following code commands are used extensively in most Arduino 

programs. This list is a good place to start when learning how to program 

an Arduino:

•	 Int: Defines a variable as an integer.

•	 #include: Used to designate additional libraries to be 

used by code.

•	 Serial.begin: Starts up serial communication and sets 

the data rate. Typically, we use it at rate 9600 baud.

•	 Float: Sets up floating point values for numbers used in 

the code.

•	 AnalogRead: Reads values from the selected analog 

port.

•	 Print: Prints data to the serial port.

•	 Println: Prints a blank line to the serial port in addition 

to what is in (“”).

•	 Delay: This command halts the Arduino from doing 

anything for the allotted time in msec.

•	 Return: This is used to return to the caller with a value. 

For example, X = Math.add(2+3) will yield X = 5.

•	 Void: This sets up a function to not pass a value back to 

the caller, for example, public void functions().  

X = functions() will throw an error in the compiler to 

remind the programmer to not expect a value.

APPENDIX  Reference MaterialREFERENCE MATERIAL



224

�Some Key Raspberry Pi Code Commands

The following code commands are used extensively in most Raspberry Pi 

programs. This list is a good place to start when learning how to develop 

Raspberry Pi programs:

•	 Import: Pull a third-party library which has its own set 

of code or function.

•	 def: Declare a function name and parameters.

•	 while: Do something while conditions are still true.

•	 print: Print to terminal a series of characters commonly 

referenced as string as an integer.

There are a lot of resources online that can help the reader gain an 

understanding of these and other commands. The Arduino site and the 

Raspberry Pi site are good places to get more information on commands 

and the format required so that they work.

�3D Printing
This is a very new and exciting technology. There is a bit of a learning curve; 

however, there are a lot of helpful resources available including online help 

and maker spaces, and some libraries now have 3D printers too.

The authors first used the 3D printers at a local library to get 

experience and then purchased a small 3D printer as the price came down 

(Figure A-3). This technique has brought the concept of the Star Trek 

replicator to life.

APPENDIX  Reference Material



225

�Computer-Aided Design Options
3D printing requires a special type of file format. Typically it is an “.stl” file 

format. The authors have not tried all of the following tools listed but have 

heard that they can be used to create the files needed for 3D printing.

Often, each CAD system operates a little differently, so the reader is 

encouraged to try out a few and determine which one they find easier to use:

•	 Blender

•	 FreeCAD

•	 Fusion 360

•	 Tinkercad

•	 SketchUp

Once the .stl file is created, then this file will need to be loaded into 

a slicer program. This tool takes the solid object and breaks it down into 

a form that the 3D printer can use to create each slice. A popular slicer 

program is CURA which supports many of the common 3D printers.

Figure A-3.  Low-Cost 3D Printer

APPENDIX  Reference Material



226

�Project Management for Engineering
There are many different project management scheduling tools: Gantt 

charts, waterfall, and others. They are very useful to lay out the project in 

a nice organized fashion and helpful to ensure completion on schedule. 

There is a balance between the schedule and the real work being 

accomplished. For small projects, a very detailed schedule may actually 

hinder progress by taking resources away from real work. However, on a 

big project, a detailed Gantt chart (Figure A-4) may actually ensure success 

by capturing all of the critical tasks needed. These tools are very useful for 

engineering projects.

�Decision Analysis for Engineering
Comparing options and determining the correct choice to make is a key 

aspect of decision analysis. One technique is to evaluate various factors 

and determine a comparative measure on these key factors. Pugh analysis 

is one example of this technique (Table A-1).

Figure A-4.  Example Gantt Schedule

APPENDIX  Reference Material



227

�Thermal Conductivity Coefficients
The following are some thermal conductivity coefficients for various 

materials. Data is from source [1]:

•	 Copper thermal conductivity coefficients  

h = 380 Joule/sec-m-oC

•	 Aluminum thermal conductivity coefficients  

h = 200 Joule/sec-m-oC

•	 Steel thermal conductivity coefficients  

h = 40 Joule/sec-m-oC

•	 Glass thermal conductivity coefficients  

h = 0.84 Joule/sec-m-oC

•	 Brick thermal conductivity coefficients  

h = 0.84 Joule/sec-m-oC

•	 Wood thermal conductivity coefficients  

h = 0.1 Joule/sec-m-oC

Table A-1.  Example Pugh Option Analysis

Factors Base Case Option 1 Option 2 Option 3

Price Datum Plus Minus Minus

Reliability Datum Minus Minus Plus

Annual cost Datum Equal Plus Equal

Ease of use Datum Minus Plus Equal

Options Datum Equal Equal Plus

Score 0 -1 0 1

APPENDIX  Reference Material



228

�Coefficients of Friction
The following are some frictional coefficients for various materials. Data is 

from source [1]:

Wood on wood

μs = 0.4

μk = 0.2

Metal on metal (lubricated)

μs = 0.15

μk = 0.07

Steel on steel (unlubricated)

μs = 0.7

μk = 0.6

Rubber on dry concrete

μs = 1.0

μk = 0.8

�Astronomy Terms
•	 Alti-azimuth: Two-axis telescope mount that when 

controlled moves vertically and rotates to the position. 

It tracks the apparent star motion due to the Earth’s 

rotation by moving in both vertical and horizontal 

rotating directions.

•	 Aperture: A hole or opening that light passes through, 

which aids in controlling the amount of light entering a 

camera or telescope.

APPENDIX  Reference Material



229

•	 Equatorial telescope mount: This is a fairly simple 

telescope mount that has one axis pointing at the North 

Star and then needs only to rotate around that axis to 

compensate for the Earth's rotation.

•	 Focal length: Measure of a telescope that when 

combined with the lens provides a measure of the 

magnification. Physically, it is the distance between a 

lens or curved mirror and its focal point.

•	 Terminator: The line between night and day on the 

moon or Earth.

•	 Telescope yoke: The structure on a telescope, 

commonly “U” shaped, that supports the telescope 

and other equipment, usually enabling telescope 

adjustments in the vertical axis.

�Specifications of the Meade ETX-60AT
The Meade ETX-60AT (Figure A-5) is a nice little telescope that does not 

require much storage space and can be set up quickly. It has the Autostar 

computer controller that allows it to track the stars as the Earth rotates. For 

its size, this telescope does an amazing magnification job. It shows a lot of 

detail on several solar system planets and the moon.

APPENDIX  Reference Material



230

It is no longer available directly from Meade, but ETX-60AT and  

ETX-70AT scopes are on sale on eBay, ranging in price from $65 to $100. 

The clamping mechanism and shelf described in Chapter 7 should work 

with either the ETX-60AT or ETX-70AT. By adding the Raspberry Pi 3 ($185) 

and its hardware to one of these telescopes, the astronomer has an updated, 

modern telescope with minicomputer, touchscreen, and camera for $270.  

A new equivalent telescope without a camera costs about $300–350.

Meade ETX-60AT telescope specifications:

•	 Aperture: 60mm

•	 Focal length: 350mm

•	 Maximum practical visual power: 200×

•	 Optical tube dimensions: 3.6˝ × 14.6˝

Figure A-5.  Meade ETX-60AT

APPENDIX  Reference Material



231

•	 Overall dimensions: 15.9˝ × 7˝ × 9˝

•	 Telescope and Autostar weight: 6.7 lbs (8 lbs with Pi)

•	 Alti-azimuth drive system using servo motors and 

encoders

•	 Battery life for Autostar: ≈ 20 hrs

�Setup, Updates, and Repairs
The Autostar control (Figure A-6) system requires a little time for the 

novice astronomer to develop utilization proficiency, but once she/he 

becomes familiar with it, it works well.

Figure A-6.  Autostar Controller

APPENDIX  Reference Material



232

After stepping through the initial screen and time setup, do a telescope 

alignment. The first step is to align the telescope so it is horizontal and 

pointing at the North Star. The Autostar will prompt the astronomer 

through the next steps, but basically it will move to a bright stellar object. 

The astronomer indicates it is good. Then it will move to a second bright 

stellar object. After the astronomer indicates it is good again, it will tell you 

it is ready to find another object and it is ready to use.

The software in the Autostar contains a catalog of stellar objects and 

can be updated so that orbits and information are current.

See the Meade web site for instructions and what is required to do this 

update: www.meade.com/support/auto.html.

Additionally, if you purchase a used telescope, verify that all the 

motors and adjustment functions are working. If the drives on your  

Meade telescope do not work, the following web site can help with repairs: 

www.youtube.com/watch?v=qbNwBWB29ow.

You can also find other videos by searching YouTube. They show how 

to repair the drives that move the telescope vertically in each yoke and how 

to repair the drive that rotates the telescope around in the base.

�Helpful Books
D. Giancoli, Physics for Scientists and Engineers, Upper Saddle River: 

Pearson Prentice Hall, 2008.

E. Premeaux and B. Evans, Arduino Projects to Save the World, 

New York: Apress, 2011.

F. Kreith, Principles of Heat Transfer, New York: Harper & Row, 1973.

M. Banzai, Getting Started with Arduino, Sebastopol: O’Reilly, 2011.

M. L. James, G. M. Smith, and J. C. Wolford, Applied Numerical 

Methods for Digital Computation, New York: Harper & Row, 1977.

S. Monk, Programming Arduino Next Steps, New York: McGraw Hill, 2014.

APPENDIX  Reference Material

http://www.meade.com/support/auto.html
http://www.youtube.com/watch?v=qbNwBWB29ow


233© Paul Bradt and David Bradt 2020  
P. Bradt and D. Bradt, Science and Engineering Projects Using the Arduino and Raspberry Pi,  
https://doi.org/10.1007/978-1-4842-5811-8

Index

A
Acceleration projects

ADXL345 sensor, 131
data, 138
graph, 139
LCD, 139–148
parts, 132
sensor to computer,  

134, 135, 137
swinging bat, 132

Alti-azimuth, 228
Aluminum rod conduction  

heat transfer
data, 91
digital/mercury  

thermometer, 90
experiment/sensor assembly, 87
K factor, 92
parabolic partial differential 

equation, 92
spreadsheet simulation, 94
temperature readings, 90
temperature sensors, 87, 89, 90

Analog device ports, 4
Analog to digital converter (ADC), 

12, 35, 52, 125
Arduino, 150

components/hardware, 5
data logging

analog sensor, 20
excel graph, 26
highlighted data, 25
parts, 20
sensor code, 22
serial monitor, 23, 24
temperature sensor, 20

IDE, 2, 3
key points, 6–8
microcontroller, 1
open source tool, 1
ports, 3, 4
setup, 2
Uno, 2

Astro-Pi telescope, 203–207
Auto-format command, 7

B
Base sensor, 90
Battery power port, 4, 7
Buoyancy of air

Arduino, 45–52
Raspberry Pi, 52–59
temperature changes, 44

https://doi.org/10.1007/978-1-4842-5811-8#ESM


234

C
Calculus

definition, 72
method, 83–84

Camera
building case

CAD, 189
3D Printing, 190–193
final assembly, 196
MakerBot slicer software, 192
screw holes, 195

fixed Clamp, 201
modifications, 188, 189
movable Clamp, 202
power cables, 197
RIVNUT/bracket, 201, 202
shelf assembly, 197–200

Capturing counts
Arduino, 67
data, 69, 70
infrared sensors, 70
occurrences, events, 65
parts, 66
SN105_capturing counts  

code, 67
Code commands

Arduino, 223
Raspberry Pi, 224

Code debugger, 31
Computer-aided design (CAD) 

software, 189, 225
Computer port, 4, 7
Convection heat transfer, 74–75

data, 108
experiment, 105
MCP9700 temperature  

sensors code, 107
movement of gas/fluid, 103
parts, 104
schematic experiment, 106

D
Data logging, Raspberry Pi

advanced 1 wire code/ 
data file, 33

basic 1 wire code, 29
configuration, 30
doe modules, 30
DS18B20 temperature  

sensor, 27
GPIO breakout boards, 27
IO ports, 28
Python 3 development  

tool, 31
Star Trek tricoder, 35
temperature sensor, 26

Debian, 9, 13
Digital device ports, 4
Dremel grinder tool, 201
DS18B20 sensor, 35

E
Effectors, 5
Electronics, 18
Equatorial telescope mount, 229

INDEX



235

F
Force/pressure

Arduino, 61
calibration curve, 60
data analysis, 65
measurement, 62
parts, 60
SN104_Basic force  

sensor code, 63, 64
Friction, 81–83
Frictional force, 148

Arduino, 119, 120
operational  

schematic, 121
Raspberry Pi, 124–131

G
GPIO SPI clock connection/

GPIO11, 12, 53
Graphical user interface  

(GUI), 9

H
Heat transfer, 35, 85

conduction, 72, 73
convection, 74, 75
mechanisms, 77
radiation, 76
working, 72

High-definition multimedia 
interface (HDMI), 10, 13

I, J, K
Inertia, 81
Inferred measurement, 41
Integrated circuit, 18
Integrated Development 

Environment (IDE), 2
Inter-Integrated Circuit  

(I2C), 13, 18, 35

L
Libre Word Processor, 177
Light and Imaging, projects

heat transfer (see Radiation  
heat transfer)

Raspberry Pi 3 case, 184–187
Raspberry Pi camera system 

(see Camera system)
Light-Emitting Diodes (LEDs), 5
Liquid Crystal Display (LCDs), 5
Loop command, 7

M, N, O
MakerBot slicer software, 192
Manufacturing techniques

CAD system, 225
decision analysis, 226
3D printing, 224, 225
force sensor, 221
Gantt schedule, 226
MCP9700 temperature sensor/

wire harness, 222

INDEX



236

project management 
scheduling tools, 226

Pugh analysis, 227
soldering safety, 221, 222

Mass, 78
Master In Slave Out (MISO), 12
Master Out Slave In (MOSI), 12
MCP9700, 35
Meade ETX-60AT telescope

Autostar computer  
controller, 229

setup/update and  
repairs, 231, 232

specification, 230
Momentum, 81

P, Q
Partial differential equation  

(PDE), 91, 92, 94
pip command, 10
Planetary Image Pre-processing/

image stacking, 207
Pressure, 39

R
Radiation heat transfer

code, TSL 2591 light  
sensor, 153, 155–159

example, 160
parts, 150

photodiode, 150
reflective coating, 161, 162
solar radiation, 161
system set up, 151
TSL 2591 light sensor, 152

Raspberry Pi
experimental/hobbyist  

device, 8
GPIO pins, 12
I2C/SPI, 16
keyboard configuration, 15
modules, 17
ports, 9
power supply, 15
spreadsheet, 11
terms/definition, 13, 14
timing issue, 15

Raspberry Pi Python GUI
image capture code, 181, 183
initiating GUI, 183
parts, 181
PI_SN003, 184
Tkinter, 180

rasp-config tool, 13
Raspistill

capture image, 177
commands, 177, 179
definition, 175
image capture recap, 179
terminal program command 

line, 175, 176
Registax, 216
Resistor, 18

Manufacturing techniques (cont.)

INDEX



237

S
Science/engineering projects

buoyancy (see Buoyancy of air)
force/pressure, 59–65
tools, 43

Sensors, 5
Sensor power ports, 4
Serial Peripheral Interface (SPI) 

protocol, 16
Shields/breakout boards, 5
Sketch, 5
Soldering safety

electronics, 219
manufacturing  

techniques, 220
shop safety, 220

Star Trek, 19, 35, 224
Statistics, 41
STEM principles, 19

T, U
Temperature, 37–38
Tension load cell, 111
Tension-measuring  

device, 119, 125
Thermal conductivity  

coefficients, 227–228
Thonny development tool, 31, 32
Time/condition dependent

acceleration project (see 
Acceleration projects)

concepts, 85

conduction heat transfer (see 
Aluminum rod conduction 
heat transfer)

convection heat  
transfer, 103–108

frictional force (see Frictional 
force)

zero gravity (see Zero gravity)
Transistor, 18

V
Velocity and acceleration, 78–80
Video Capture GUI

4 ½-inch reflector, 211–214
image creation and 

enhancement, 215–217
image stacking, 207
Meade ETX-60AT, 208–211

Void loop, 7
Voltage, 18

W, X, Y
Window conduction heat transfer

data, 102
hardware connection, 95
high differential  

temperature, 103
project, 96
Raspberry Pi, 95
RTC/SD card shield code,  

98, 99, 101
schematic, 97

INDEX



238

Z
Zero gravity, 148

data, 116
force data graph, 117
free body diagram, 109

parts, 110
project setup/ 

schematic, 114
tension sensor, 110–113
upper U-bolt, 111

INDEX


	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Key Technology Tools
	Arduino Basics
	Arduino Setup
	Ports and Interfaces
	Lessons Learned About the Arduino

	Raspberry Pi Basics
	Raspberry Pi Setup
	Lessons Learned About the Raspberry Pi

	Basic Electronics Definitions
	Summary

	Chapter 2: Data Logging Basics
	Data Logging with the Arduino
	Data Logging with the Raspberry Pi
	Summary

	Chapter 3: Physics and  Mathematics Basics
	Temperature
	Force
	Pressure
	Basic Concept of Algebra
	Statistical Concepts
	Direct Compared to Inferred Measurements
	Summary

	Chapter 4: Simple Science and  Engineering Projects
	Buoyancy of Air
	Arduino Buoyancy of Air Version
	Raspberry Pi Buoyancy of Air Version
	Buoyancy Recap

	Demonstrating Pressure
	Pressure/Force Recap

	Capturing Counts
	Counts Recap

	Summary

	Chapter 5: Advanced Physics and Mathematics for Science and Engineering
	Basics Terms of Calculus
	How Heat Transfer Works
	Conduction Heat Transfer
	Convection Heat Transfer
	Radiation Heat Transfer
	All Three Heat Transfer Mechanisms Work Together!

	Mass
	Velocity and Acceleration
	Inertia
	Momentum
	Friction
	More Advanced Aspects of Calculus
	Summary

	Chapter 6: Time/Condition-Dependent Projects
	Conduction Heat Transfer Through an Aluminum Rod
	Ensure Consistency in Temperature Sensor Readings
	Aluminum Rod Conduction Heat Transfer Recap

	Conduction Heat Transfer Through a Window
	Window Conduction Heat Transfer Recap

	Convection Heat Transfer
	Convection Heat Transfer Recap

	Zero Gravity Demonstration
	Zero Gravity Recap

	Measuring Frictional Force Projects
	Arduino Frictional Force Project
	Operational Schematic
	Arduino Frictional Force Recap
	Raspberry Pi Frictional Force Project
	Raspberry Pi Frictional Force Recap

	Acceleration Projects
	Acceleration Direct to Computer

	Acceleration with Computer Recap
	Acceleration Measurement Without a Computer

	Acceleration Without Computer Recap
	Summary

	Chapter 7: Light and Imaging Projects
	Radiation Heat Transfer
	Analysis of Heat Transfer
	Radiation Heat Transfer Recap

	Astrophotography with the Raspberry Pi Camera
	Assembling the Meade ETX-60AT and Raspberry Pi
	Astrophotography Meade ETX-60AT Setup Recap

	Assembling the 4 1/2-Inch Reflector Telescope and the Raspberry Pi
	Components Needed to Assemble the  Raspberry Pi 3 Mounting System to the  4 1/2-Inch Telescope
	Reflector Telescope Setup Recap

	Basic Raspistill Previewing an Image with the Terminal Command Line
	Using Raspistill to Capture an Image
	More Advanced Raspistill Input Without a Keyboard
	Raspistill Image Capture Recap

	Astrophotography Raspberry Pi Python GUI
	Initiating the GUI
	PI_SN003 Raspberry PI GUI Recap

	Assembling the Raspberry Pi and Touchscreen in the Case
	Raspberry Pi, Touchscreen, and Case
	Modification of the Case and Assembly
	Components and Assembly of the Raspberry Pi Case Recap

	Camera Modifications, Camera Case, and Power Cables
	Camera Modifications
	Building the Camera Case
	Final Assembly of the Camera in the Case
	Power Cord Combination
	Camera, Camera Case, and Power Cord Assembly Recap
	Building the Shelf for the Meade ETX-60AT
	Shelf Components and Assembly Recap

	Helpful Hints Using the Telescope and Raspberry Pi
	Lessons Learned Recap

	Example Images and Enhancing Them Using a Video Capture GUI
	Example Images Taken with the Upgraded Meade ETX-60AT Astrophotography System
	Example Images Taken with the Upgraded 4 1/2-Inch Reflector Telescope Astrophotography System
	Making an Astronomical Video and Creating Enhanced Images
	Image Creation and Enhancement from a Video

	Recap of Example Images and Enhancement Techniques

	Summary

	Appendix: Reference Material

	Soldering Safety
	General Shop Safety

	Manufacturing Techniques
	Soldering
	Basic Arduino and Raspberry Pi Python Commands
	Some Key Arduino Code Commands
	Some Key Raspberry Pi Code Commands

	3D Printing

	Computer-Aided Design Options
	Project Management for Engineering
	Decision Analysis for Engineering
	Thermal Conductivity Coefficients
	Coefficients of Friction

	Astronomy Terms
	Specifications of the Meade ETX-60AT
	Setup, Updates, and Repairs

	Helpful Books

	Index



